首页> 外文会议>Conference on Signal and Data Processing of Small Targets 2004; 20040413-20040415; Orlando,FL; US >Approaches for Processing Spectral Measurements of Reflected Sunlight for Space Situational Awareness
【24h】

Approaches for Processing Spectral Measurements of Reflected Sunlight for Space Situational Awareness

机译:空间态势感知的反射阳光光谱测量处理方法

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of small, lightweight, 'micro-' and 'nanosatellite' (largest dimension < 1m ) has presented new challenges to the space surveillance community. The small size of these satellites makes them unresolvable by ground-based imaging systems. The core concept of using Non-Imaging Measurements (NIM) to gather information about these objects comes from the fact that after reflection on a satellite surface, the reflected light contains information about the surface materials of the satellite. This approach of using NIM for satellite evaluation is relatively new. In this paper, we discuss the accuracy of using these spectral measurements to match an unknown spectrum to a database containing known spectra. Several approaches have been developed and are presented in this paper. The first method is an artificial neural network designed to process central moments of real measured spectra. This spectrum database is the Spica database provided by the Maui Surveillance Site (MSSS), Hawaii USA and consists in spectra from more than 100 different satellites. The average rate of correct identification is 84%. The second approach is based on the ability of spectral signal processing to estimate relative abundances of materials from the measurement of a single spectrum; this method is called spectral unmixing. Material spectra were provided by the NASA Johnson Space Center (JSC) to create synthetic spectra. An approach based on the Expectation Maximization (EM) algorithm was used to estimate relative abundances and presence of materials in a synthetic spectrum. The results for material identification and abundance estimation are presented as a function of signal-to-noise ratio. For the EM method, the overall correct estimation rate is 95.1% and the average error on the fractional composition estimation is 19.7%.
机译:小型,轻量,“微型”和“纳米卫星”(最大尺寸<1m)的扩散给太空监视界提出了新的挑战。这些卫星的体积小,无法通过地面成像系统解决。使用非成像测量(NIM)收集有关这些对象的信息的核心概念来自以下事实:在卫星表面反射后,反射的光包含有关卫星表面材料的信息。使用NIM进行卫星评估的方法相对较新。在本文中,我们讨论了使用这些光谱测量值将未知光谱与包含已知光谱的数据库匹配的准确性。已经开发了几种方法,并在本文中进行了介绍。第一种方法是人工神经网络,旨在处理实际测量光谱的中心矩。该光谱数据库是美国夏威夷毛伊岛监视站点(MSSS)提供的Spica数据库,包含来自100多个不同卫星的光谱。正确识别的平均率为84%。第二种方法基于光谱信号处理能力,可以根据单个光谱的测量值来估算材料的相对丰度。这种方法称为频谱分解。美国国家航空航天局约翰逊航天中心(JSC)提供了材料光谱以创建合成光谱。使用基于期望最大化(EM)算法的方法来估计合成光谱中材料的相对丰度和存在。材料鉴定和丰度估计的结果是信噪比的函数。对于EM方法,整体正确估计率为95.1%,分数组成估计的平均误差为19.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号