首页> 外文会议>Conference on quantum dots, particles, and nanoclusters VI; 20090125-28; San Jose, CA(US) >The spectral analysis and mode structure of ultrabroad InAs/InAlGaAs quantum dash laser
【24h】

The spectral analysis and mode structure of ultrabroad InAs/InAlGaAs quantum dash laser

机译:超宽InAs / InAlGaAs量子破折号激光器的光谱分析和模式结构

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate the widened broadband emission of self-assembled quantum dash laser using impurity-free vacancy induced disordering (IFVD) technique. The 100 nm blueshifted lasers exhibit higher internal quantum efficiency and lower threshold current densities than the as-grown devices. The laser emission from multiple groups of quantum-dash (Qdash) families convoluted with multiple orders of subband energy levels within a single Qdash ensemble is experimentally observed. However, the suppression of laser emission in short wavelength and the progressive redshift of peak emission with injection current from devices with short cavity length occur. These effects have been attributed to the nonequilibrium carrier distribution and energy exchange among different sizes of Qdash ensembles. In addition, we perform the far-field lateral mode measurements from the fabricated as-grown Qdash laser. The analysis of mode patterns indicate that Qdash lasers exhibit gradual broadening of beam divergence (FWHM of 3.4° to 10.8°) with increasing injection current. However, these beam divergence angles are still narrower than the quantum well (QW) laser (FWHM ~13°) at an injection up to 2.5×Jth. Qdash laser exhibits an improved output beam quality, therefore reduced filamentation, as compared to the QW laser, owing to the inherent characteristics from quantum-dot (Qdot) laser, where injected carriers are confined by the lateral energy barriers as Qdots are disconnected laterally and are cladded by larger bandgap materials. Our results imply a highly attractive wavelength trimming method, well suited for improved performance, and monolithic Qdash integration of optoelectronics components.
机译:我们演示了使用无杂质空位诱导无序(IFVD)技术的自组装量子破折号激光器的宽带发射。与生长中的器件相比,100 nm蓝移激光器表现出更高的内部量子效率和更低的阈值电流密度。实验观察到了来自多个量子破折号(Qdash)族群的激光发射,这些量子散乱在单个Qdash整体中被多个阶的子带能级所盘旋。但是,发生了短波长激光发射的抑制和来自腔长度短的器件注入电流注入时峰值发射的逐渐红移。这些影响已归因于不同大小的Qdash集成体之间的非平衡载流子分布和能量交换。此外,我们从制造的Qdash激光器进行远场横向模式测量。模式模式的分析表明,随着注入电流的增加,Qdash激光器的光束发散逐渐变宽(FWHM为3.4°至10.8°)。但是,这些光束的发散角在注入高达2.5×Jth时仍比量子阱(QW)激光器(FWHM〜13°)窄。由于量子点(Qdot)激光器的固有特性,Qdash激光器与QW激光器相比,输出光束质量得到改善,因此减少了灯丝现象。量子点(Qdot)激光器具有固有的特性,其中注入的载流子由于侧面的Qdot相互断开而受到横向能垒的限制。被较大的带隙材料覆盖。我们的结果暗示了一种非常有吸引力的波长微调方法,非常适合于改善的性能以及光电子组件的单片Qdash集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号