首页> 外文会议>Conference on Modeling, Signal Processing, and Control; 20040315-20040318; San Diego,CA; US >Topology Optimization Applied to the Design of Multi-Actuated Piezoelectric Micro-tools
【24h】

Topology Optimization Applied to the Design of Multi-Actuated Piezoelectric Micro-tools

机译:拓扑优化在多驱动压电微型工具设计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Micro-tools can have a wide range of application such as cell manipulation, microsurgery, nanotechnology equip-ment,etc. Micro-tools considered in this work consist of a multiflexible structure actuated by two or more piezoceramics that must generate different output displacements and forces in different specified points of the domain and directions, for different excited piezoceramics. The multiflexible structure acts as a mechanical transform by amplifying and changing the direction of the piezoceramics output displacements. Thus, the development of micro-tools requires to design micromechanisms with many degrees of freedom that perform complex movements without presence of joints and pins, due to manufacturing constraints of MEMS scale. In addition, when many piezoceramics are involved the coupling among movements becomes critical, that is, undesired movements may appear. This makes the design task very complex, which suggests that systematic design method, such as topology optimization, must be applied. Thus, in this work the topology optimization formulation was applied to design micro-tools actuated by many piezoceramics with minimum movement coupling. Essentially, the topology optimization method consists of finding the optimal material distribution in a design domain to extremize some objective function. The topology optimization method implemented is based on the CAMD approach where the pseudo-densities are interpolated in each finite element, providing a continuum material distribution in the domain. The optimization problem is posed as the design of a flexible structure that maximizes different output displacements (or grabbing forces) in different specified directions and points of the domain, for different excited piezoceramics. Different types of micro-tools can be obtained for a desired application. Among the examples, designs of a XY nanopositioner and a micro-gripper are considered.
机译:微型工具可以具有广泛的应用,例如细胞处理,显微外科手术,纳米技术设备等。在这项工作中考虑的微型工具由两个或多个压电陶瓷驱动的多柔性结构组成,必须为不同的激励压电陶瓷在域和方向的不同指定点上产生不同的输出位移和力。多柔韧性结构通过放大和更改压电陶瓷输出位移的方向来充当机械变换。因此,由于MEMS规模的制造限制,微型工具的开发需要设计具有许多自由度的微机构,该微机构执行复杂的运动而没有接头和销钉的存在。另外,当涉及许多压电陶瓷时,运动之间的耦合变得很关键,即,可能出现不希望的运动。这使设计任务非常复杂,这表明必须应用系统设计方法,例如拓扑优化。因此,在这项工作中,拓扑优化公式被应用于设计由许多压电陶瓷驱动的,具有最小运动耦合的微型工具。本质上,拓扑优化方法包括在设计域中找到最佳的材料分布以最大化某些目标函数。实施的拓扑优化方法基于CAMD方法,其中在每个有限元中插入伪密度,从而在域中提供连续的材料分布。最优化问题是针对柔性结构的设计,该结构针对不同的激励压电陶瓷在不同的指定方向和区域点上最大化不同的输出位移(或抓力)。可以针对所需应用获得不同类型的微型工具。在这些实例中,考虑了XY纳米定位器和微夹持器的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号