【24h】

Plasma Deposition of Oxide Cathodes

机译:等离子体沉积的氧化物阴极

获取原文

摘要

Vacuum arc deposition is employed to create a barium and/or strontium plasma which is subsequently deposited/implanted onto a nickel cathode substrate. The primary motivation for this work is the critical need for a reliable, repeatable, long-lived thermionic cathode for the production of high power, microsecond duration microwave pulses; such cathodes may also have applicability for lower current density continuous wave devices. This novel approach to manufacturing an oxide cathode eliminates the binders that may subsequently (and unpredictably) poison cathode emission. Removal of the poisoning mechanisms has yielded oxide cathodes capable of emission densities in the 20 A/cm~2 regime. Cathode lifetime and emission may be varied via the control over the deposition parameters such as coating thickness, implantation energy, and plasma stoichiometry. The deposition is performed by generating a cathodic arc discharge at the surface of a barium or barium-stronium alloy rod. The metal plasma thus created is then deposited on the substrate which can be negatively biased to encourage implantation during the deposition process. The deposition is performed with sufficient background oxygen present to oxidize the highly reactive metal coating. The plasma deposition is monitored via a rate thickness monitor, an optical emission spectrometer for plasma composition information, and an electrostatic Langmuir probe for the determination of the plasma density and temperature profile. Cathodes thus produced are analyzed by drawing pulsed current at a constant voltage for various values of decreasing cathode temperature in order to generate practical work function distributions which provide an indication of the quality and expected life time of the cathode. In support of analyzing these cathodes (as well as a variety of cathodes from other sources), a complete UHV cathode test and analysis system has been assembled which includes 3-D beam profiling, advanced temperature measurement, residual gas analysis, bulk cold work function measurement, and surface analysis with depth profiling.
机译:采用真空电弧沉积产生钡和/或锶等离子体,随后将其沉积/注入到镍阴极基板上。这项工作的主要动机是迫切需要可靠,可重复,寿命长的热电子阴极,以产生高功率,微秒持续时间的微波脉冲。这样的阴极还可用于较低电流密度的连续波器件。这种制造氧化物阴极的新颖方法消除了可能随后(且不可预测地)毒害阴极发射的粘合剂。消除中毒机理产生了能够以20 A / cm〜2态发射密度的氧化物阴极。可以通过控制沉积参数(例如涂层厚度,注入能量和等离子体化学计量)来改变阴极寿命和发射。通过在钡或钡-锶合金棒的表面产生阴极电弧放电来执行沉积。然后将由此产生的金属等离子体沉积在衬底上,该衬底可以被负偏压以促进在沉积过程中的注入。在存在足够背景氧的情况下进行沉积,以氧化高反应性金属涂层。等离子体沉积通过速率厚度监视器,用于等离子体成分信息的光发射光谱仪和用于确定等离子体密度和温度曲线的静电朗缪尔探针进行监视。通过在恒定电压下汲取脉冲电流以分析阴极温度降低的各种值,从而分析由此产生的阴极,以产生实用的功函数分布,这些分布可提供阴极质量和预期寿命的指示。为了支持分析这些阴极(以及其他来源的各种阴极),已组装了完整的超高压阴极测试和分析系统,其中包括3-D光束轮廓分析,先进的温度测量,残留气体分析,批量冷作功能测量和具有深度轮廓的表面分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号