首页> 外文会议>Conference on Future Research Direction and Visions for Astronomy; Aug 25-26, 2002; Waikoloa, Hawaii, USA >All Sky Doppler Extra-solar Planet Surveys with a Multi-object Fixed-delay Interferometer
【24h】

All Sky Doppler Extra-solar Planet Surveys with a Multi-object Fixed-delay Interferometer

机译:使用多对象固定延迟干涉仪进行的所有天空多普勒太阳系行星测量

获取原文
获取原文并翻译 | 示例

摘要

Characterization of extra-solar planetary systems requires surveying for planets around hundreds of thousands of nearby stars of all types, with different metalicities, environments (star cluster and multiple star systems), ages etc. Space missions such as SIM, NGST and TPF will identify many of these systems. However, these missions need ground-based surveys to find candidates to improve their efficiency and provide complementary work. Among these surveys, Doppler radial velocity (RV) surveys, which have detected almost all of ~ 100 known planetary systems, will continue to be the most efficient for detecting planets. Though the cross-dispersed echelle spectroscopy has demonstrated high sensitivity and good efficiency for observing thousands of stars, (limited to late F,G, K and M type), it would be tremendously challenging to search for hundreds of thousands of stars since this would require more than 2 orders of magnitude improvement in observing efficiency. New techniques with high throughput and multi-object capability for high precision RV surveys are crucial in solving this problem. Here we introduce a new technique based on a multi-object fixed-delay interferometer with a first order grating postdisperser which provides the potential for all sky radial velocity surveys for planets. This kind of instrument is a combination of a fixed-delay interferometer with a moderate resolution postdisperser. Doppler measurements are conducted by monitoring stellar interferometric fringe phase shifts instead of absorption line centroid shifts as in the echelle. High Doppler sensitivity is achieved by optimizing the optical delay in the interferometer and reducing photon noise by measuring multiple fringes over a broadband realized by the post-disperser. Since the resulting Doppler sensitivity is independent of the dispersion power of the post-disperser, the whole instrument can be designed for multiple objects, high throughput, and high Doppler sensitivity, while the instrument can be made very compact, thermally and mechanically rigid, and low-cost compared to the echelles. Its superior stability and simple instrument response allow its easy adaptation to other wavelengths such as UV and IR. Once a multi-object instrument of this type, with possible UV, visible and near-IR instrument channels, is coupled with a wide field telescope (a few degree, such as Sloan and WIYN), it will produce hundreds of fringing spectra to allow simultaneous searching for planets around late type F, G, and K stars in the visible, early type B and A-type stars, and white dwarfs in UV and late M-dwarfs in near-IR. The first light observations of our prototype interferometer at the Hobby-Eberly 9m and Palomar 5m telescopes in 2001 have demonstrated that this new technique can approach high Doppler precision mainly determined by photon statistics (Ge et al. 2001; van Eyken et al. 2001; Ge et al. 2002). For instance, a stellar intrinsic Doppler precision of ~ 3 m/s has been achieved with a wavelength coverage of ~140 A and S/N ~ 120 per pixel. The overall short-term Doppler measurement error is ~ 9 m/s. This is mainly caused by low fringe contrast (or visibility) of the iodine absorption lines (~ 2.5% vs. ~7% in stellar lines) for wavelength calibration. Recent observing at the KPNO 2.1-m telescope demonstrated good instrument throughput and increased wavelength coverage. The total detection efficiency including the sky, telescope and fiber transmission losses, the instrument and iodine transmission losses and detector quantum efficiency is 3.4% under 1.5 arcsec seeing conditions. This efficiency is already comparable to all of the echelle spectrometers for planet detection.
机译:要表征太阳系外行星系统,需要对周围数十万颗各种类型的恒星进行调查,这些恒星具有不同的金属性,环境(星团和多星系统),年龄等。SIM,NGST和TPF等太空任务将确定其中许多系统。但是,这些特派团需要进行地面调查,以找到候选人,以提高其效率并提供补充性工作。在这些勘测中,多普勒径向速度(RV)勘测已检测出约100个已知行星系统中的几乎所有,将继续是最有效的行星探测方法。尽管交叉色散的埃歇尔光谱法已经证明了观测数千颗恒星的高灵敏度和良好的效率(限于晚F,G,K和M型),但是搜索成千上万颗恒星将面临巨大挑战,因为这将要求将观测效率提高2个数量级以上。具有高通量和多目标能力的高精度RV测量新技术对于解决此问题至关重要。在这里,我们介绍一种基于多目标固定延迟干涉仪和一阶光栅后扩散器的新技术,该技术为行星的所有天空径向速度测量提供了潜力。这种仪器是固定延迟干涉仪与中等分辨率后扩散器的组合。多普勒测量是通过监视恒星干涉条纹边缘的相移来进行的,而不是像在echelle中那样,通过吸收线质心的移位来进行。通过优化干涉仪中的光学延迟并通过测量由后分散器实现的宽带上的多个条纹来降低光子噪声,可以实现高多普勒灵敏度。由于产生的多普勒灵敏度与后分散器的分散能力无关,因此整个仪器可以设计用于多个物体,高通量和高多普勒灵敏度,同时可以将仪器制造得非常紧凑,具有热和机械刚度,并且与echelles相比,成本较低。其出色的稳定性和简单的仪器响应使其易于适应其他波长,例如紫外线和红外线。一旦这种类型的多对象仪器(具有可能的紫外线,可见光和近红外仪器通道)与广角望远镜(一定程度,例如Sloan和WIYN)配合使用,将产生数百个边缘光谱以允许同时在可见,早期B型和A型恒星中搜索F,G和K型晚星周围的行星,并在UV中搜索白矮星,在近红外中搜索晚期M矮星。 2001年,我们在Hobby-Eberly 9m和Palomar 5m望远镜上对原型干涉仪进行了首次光学观察,结果表明,这项新技术可以达到高多普勒精度,主要由光子统计确定(Ge等,2001; van Eyken等,2001; 2001)。 Ge等,2002)。例如,已经实现了约3 m / s的恒星本征多普勒精度,每个像素的波长覆盖范围约为140 A,S / N约为120。总的短期多普勒测量误差为〜9 m / s。这主要是由于用于波长校准的碘吸收线的条纹对比度(或可见度)较低(约2.5%,而恒星线约为7%)。最近在KPNO 2.1-m望远镜上观察到的数据显示出良好的仪器通量和更大的波长范围。在1.5 arcsec视线条件下,包括天空,望远镜和光纤传输损耗,仪器和碘传输损耗以及检测器量子效率在内的总检测效率为3.4%。这种效率已经可以与所有用于行星探测的echelle光谱仪相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号