首页> 外文会议>Conference on Data Mining and Applications Oct 23-24, 2001, Wuhan, China >The new image fusion method applied in two wavelengths detection of biochip spot
【24h】

The new image fusion method applied in two wavelengths detection of biochip spot

机译:图像融合新方法在生物芯片斑点两种波长检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

In the biological systems genetic information is read, stored, modified, transcribed and translated using the rule of molecular recognition. Every nucleic acid strand carries the capacity to recognize complementary sequences through base paring. Molecular biologists commonly use the DNA probes with known sequence to identify the unknown sequence through hybridization. There are many different detection methods for the hybridization results on a genechip. Fluorescent detection is a conventional method. The data analysis based on the fluorescent images and database establishment is necessary for treatment of such a large-amount obtained from a genechip. The unknown sequence has labeled with fluorescent material. Since the excitation and emission band is not a theoretical narrow band. There is a different in emission windows for different microscope. Therefore the data reading is different for different microscope. We combine two narrow band emission data and take it as two wavelengths from one fluorescence. Which by corresponding UV light excitation after we read the fluorescent intensity distribution of two microscope wavelengths for same hybridization DNA sequence spot, we will use image fusion technology to get best results * We introduce a contrast and aberration correction image fusion method by using discrete wavelet transform to two wavelengths identification microarray biochip. This method includes two parts. First, the multiresolution analysis of the two input images are obtained by the discrete wavelet transform, from the ratio of high frequencies to the low frequency on the corresponding spatial resolution level, the directive contrast can be estimated by selecting the suitable subband signals of each input image. The fused image is reconstructed using the inverse wavelet transform. The second method is to correct the aberration; here we correct distortion aberrations with distortion aberration equation, which shows the deviation is proportional to the cube of image high. By compare the object of the standard square matrix and the distortion image we can reduce the distortion aberration. This technique is relevant to visual sensitivity and aberration of two wavelengths fluorescence microscope to detect the biochip microarray. The results show that the fused image can get better analysis of the details of each original micro spot biochip.
机译:在生物系统中,使用分子识别规则读取,存储,修改,转录和翻译遗传信息。每条核酸链都具有通过碱基配对识别互补序列的能力。分子生物学家通常使用具有已知序列的DNA探针通过杂交鉴定未知序列。基因芯片上的杂交结果检测方法有很多。荧光检测是常规方法。基于荧光图像和数据库建立的数据分析对于处理从基因芯片获得的如此大量的数据是必要的。未知序列已用荧光物质标记。由于激发和发射带不是理论上的窄带。不同显微镜的发射窗口不同。因此,不同显微镜的数据读取是不同的。我们结合两个窄带发射数据,并将其作为来自一个荧光的两个波长。在读取相同显微镜下杂交DNA序列点的两个显微镜波长的荧光强度分布后,通过相应的紫外光激发,我们将使用图像融合技术获得最佳效果*我们通过使用离散小波变换引入对比度和像差校正图像融合方法以两种波长鉴定微阵列生物芯片。此方法包括两个部分。首先,通过离散小波变换获得两个输入图像的多分辨率分析,从相应空间分辨率级别上的高频与低频之比,可以通过选择每个输入的合适子带信号来估计定向对比度。图片。使用逆小波变换来重建融合图像。第二种方法是校正像差。在这里,我们用畸变像差方程校正畸变像差,这表明偏差与图像的三次方成正比。通过比较标准方阵的对象和畸变图像,可以减少畸变像差。该技术与视觉灵敏度和两个波长荧光显微镜的像差检测生物芯片微阵列有关。结果表明,融合图像可以更好地分析每个原始微点生物芯片的细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号