首页> 外文会议>Composites at Lake Louise 2015 >DETERMINISTIC THREE DIMENSIONAL COMPOSITE STRUCTURES FOR ENERGY STORAGE
【24h】

DETERMINISTIC THREE DIMENSIONAL COMPOSITE STRUCTURES FOR ENERGY STORAGE

机译:能源存储的确定性三维复合结构

获取原文
获取原文并翻译 | 示例

摘要

Through mesoscale design of a 3D current collector, high power density and high energy density primary and secondary (rechargeable) large format and microbatteries (Figure 1) were fabricated. At the most fundamental level, mesostructuring enables optimization of the trade-off between energy and power density in energy storage systems due to unavoidable ohmic and other losses that occur during charge or discharge. Of course, it is at fast charge and discharge, where these effects are most important. By efficient design of the ion and electron transport pathways, we and others have shown it is possible to significantly improve the power-energy relationship. We have found a particularly effective way to provide these pathways is to use holographic and colloidal-based templates to form a mesostructured 3D current collector. The electrochemically active material is then deposited on this current collector. Using this approach, Li-ion batteries which could be discharged at up to 300C with 75% capacity retention were formed. The combination of a high surface area and short solid-state diffusion lengths offers a number of unique opportunities for both high energy and high power chemistries. As examples, we have formed conventional form-factor and microbattery high power cells based on lithiated manganese oxide and other oxide-based cathodes, and carbon, NiSn, iron oxide, and silicon-based anodes.
机译:通过3D集电器的中尺度设计,制造出了高功率密度和高能量密度的一次和二次(可充电)大幅面电池和微电池(图1)。在最基本的水平上,介观结构可优化储能系统中能量和功率密度之间的权衡,这是由于在充电或放电过程中不可避免地会发生欧姆和其他损耗。当然,在快速充电和放电时,这些影响最为重要。通过有效设计离子和电子传输路径,我们和其他人已经表明可以显着改善功率-能量关系。我们发现提供这些途径的一种特别有效的方法是使用基于全息和胶体的模板来形成介观结构的3D集电器。然后将电化学活性材料沉积在该集电器上。使用这种方法,形成了可以在高达300C的温度下放电并保持75%容量的锂离子电池。高表面积和短固态扩散长度的结合为高能量和高功率化学物质提供了许多独特的机会。作为示例,我们基于锂化的氧化锰和其他基于氧化物的阴极以及碳,NiSn,氧化铁和基于硅的阳极,形成了传统的形状因数和微电池高功率电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号