首页> 外文会议>Clearwater clean energy conference 2017 >INVESTIGATIONS OF FOULING AND SLAGGING IN HIGH TEMPERATURE GASIFICATION AND USE OF THAT INFORMATION TO MINIMIZE THOSE TENDENCIES
【24h】

INVESTIGATIONS OF FOULING AND SLAGGING IN HIGH TEMPERATURE GASIFICATION AND USE OF THAT INFORMATION TO MINIMIZE THOSE TENDENCIES

机译:高温气化过程中的结垢和结渣的调查,并使用该信息来最大程度地减少此类趋势

获取原文
获取原文并翻译 | 示例

摘要

High temperature slagging gasifiers are used to convert a carbon feedstock; typically coal, petcoke, and/or biomass; into the primary desired product of CO and H_2 (called synthesis gas or, shortened to syngas); creating process by-products of carbon char and organic-metallic or mineral impurities. Coal averages about 10 wt pet ash and petcoke about 1 wt pet ash, although values can be higher/lower depending on the source of the feedstock and, in the case of coal, consistency in its geology, mining, and beneficiation. Peak temperatures in slagging gasifiers can range from about 1350-1575℃, creating an environment where ash becomes molten and can remain as individual particles or coalesce to form liquid slag that flows down the gasifier refractory sidewall. Because of the short residence time during gasification (seconds vs minutes) and the physical size and particle size distribution of a carbon feedstock, the gasifier environment is considered as metastable or non-equilibrium. The process by design produces excess carbon as char (partially processed carbon feedstock). As ash particles melt and start to coalesce, they move toward a global thermodynamic equilibrium involving gas, solid, and liquid phases that is dependent on what non-carbon content material exists in the coal. The gas flow rate, feedstock chemistry, gasification temperature, and oxygen partial pressure determine the amount of each phase created. Minerals that contain chlorine or sulfur can also oxidize; forming gases, liquid phases, or particulate that can contribute to deposits or react with material surfaces. Regardless of the source, ash formed from carbon feedstock materials contribute to agglomeration, fouling, or slag issues, the most serious being: 1) poor slag flow cause by high viscosity slag (typically at the exist of the gasifier), or 2) downstream fouling in areas like syngas coolers caused by particulate buildup that require periodic cleaning and that impact overall system efficiency. Fouling and slagging issues are also important in new gasification system designs, such as the Radically Engineered Modular Systems under study by NETL, which will require accurate process control over a wide range of temperatures. In these gasification systems, the potential for agglomeration, fouling, or slag formation at many stages in not known. The causes of fouling and slag buildup can be broken down into areas such as the feedstock material, the processed carbon particle size and size distribution, additives made to the carbon feedstock, the gasifier type, how a carbon feedstock is introduced in a gasifier, the temperature and oxygen partial pressure of gasification, and how the syngas and by-products are removed from a gasifier. Several analytical tools are available to study fouling and slagging - information which can be used to control the gasification environment and minimize those tendencies. This paper will discuss how knowledge of ash chemistry; information from analytical tests and microstructure studies (ash fusion, high temperature controlled atmosphere confocal microscopy, high temperature viscosity, controlled atmosphere high temperature thermogravimetric analysis, and thermodynamic calculations) can be used to minimize or control agglomeration, fouling, or disruptive slag tendencies.
机译:高温排渣气化炉用于转化碳原料。通常是煤炭,石油焦和/或生物质;转化为CO和H_2的主要目标产物(称为合成气或简称为合成气);产生碳焦和有机金属或矿物杂质的过程副产品。煤的平均含量约为10 wt%的煤灰,而石油焦的约为1 wt%的煤灰,尽管根据原料的来源以及煤的地质,开采和选矿的一致性,其值可以更高/更低。排渣气化炉的峰值温度范围约为1350-1575℃,从而形成了一个灰烬熔化并残留下来的环境,灰烬会随着单个颗粒或聚结而残留下来,形成向下流到气化炉耐火材料侧壁的液态炉渣。由于气化过程中的停留时间短(秒数与数分钟),并且碳原料的物理尺寸和粒径分布不均,因此气化器环境被认为是亚稳态或非平衡的。根据设计,该过程会产生过量的碳作为焦炭(部分加工的碳原料)。当灰烬颗粒熔化并开始聚结时,它们朝着涉及气相,固相和液相的全局热力学平衡移动,该平衡取决于煤中存在的非碳含量物质。气体流速,原料化学性质,气化温度和氧气分压决定了每个相的生成量。含有氯或硫的矿物质也会氧化。形成可导致沉积或与材料表面反应的气体,液相或颗粒。无论来源如何,由碳原料形成的灰分都会导致结块,结垢或炉渣问题,最严重的是:1)高粘度炉渣(通常在气化炉存在的情况下)导致炉渣流动不良,或2)下游颗粒物积聚导致合成气冷却器等区域结垢,需要定期清洁并影响整体系统效率。结垢和结渣问题在新的气化系统设计中也很重要,例如NETL正在研究的“自由基工程模块化系统”,这将要求在广泛的温度范围内进行精确的过程控制。在这些气化系统中,尚不清楚许多阶段的附聚,结垢或炉渣形成的可能性。结垢和炉渣堆积的原因可分为以下几方面:原料,处理过的碳的粒度和尺寸分布,碳原料制成的添加剂,气化炉类型,如何将碳原料引入气化炉,气化的温度和氧气分压,以及如何从气化炉中去除合成气和副产物。有几种分析工具可用于研究结垢和结渣-可用于控制气化环境并使这些趋势最小化的信息。本文将讨论灰化学知识。来自分析测试和微观结构研究的信息(灰熔融,高温可控气氛共聚焦显微镜,高温粘度,可控气氛下高温热重分析和热力学计算)可用于最小化或控制结块,结垢或破坏性炉渣趋势。

著录项

  • 来源
  • 会议地点 Clearwater(US);Clearwater FL(US)
  • 作者单位

    National Energy Technology Laboratory - USDOE, 1450 Queen Ave SW, Albany, OR, USA 97312;

    National Energy Technology Laboratory - USDOE, 1450 Queen Ave SW, Albany, OR, USA 97312,AECOM, P.O. Box 1959, Albany, OR, USA 97321;

    National Energy Technology Laboratory - USDOE, 1450 Queen Ave SW, Albany, OR, USA 97312,AECOM, P.O. Box 1959, Albany, OR, USA 97321;

    National Energy Technology Laboratory - USDOE, 1450 Queen Ave SW, Albany, OR, USA 97312;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号