首页> 外文会议>Conference on advancing manufacture of cell and gene therapies >A SCALABLE AND PHYSIOLOGICALLY RELEVANT SYSTEM FOR HUMAN INDUCED PLURIPOTENT STEM CELL EXPANSION AND DIFFERENTIATION
【24h】

A SCALABLE AND PHYSIOLOGICALLY RELEVANT SYSTEM FOR HUMAN INDUCED PLURIPOTENT STEM CELL EXPANSION AND DIFFERENTIATION

机译:可扩展的和生理相关的人类致敏干细胞扩增和分化的系统

获取原文

摘要

Human induced pluripotent stem cells (iPSCs) and their derivatives are needed in large numbers for various biomedical applications. However, scalable and cost-effective manufacturing of high quality iPSCs and their derivatives remains a challenge. In vivo, cells reside in a 3D microenvironment that has plenty of cell-cell and cell-ECM (extracellular matrix) interactions, sufficient supply of nutrients and oxygen, and minimal hydrodynamic stresses. The current iPSC culturing methods, however, provide highly-stressed culturing microenvironments, leading to low culture efficiency. For instance, we and others showed iPSCs typically expanded 4-fold/4 days to yield ~2.0×10^6 cells/mL with current 3D suspension culturing. These cells occupy ~0.4% of the bioreactor volume. To our best knowledge, the largest culture volume demonstrated to date for iPSCs is less than 10 liters. There is a critical need to develop new culture technologies to achieve the iPSCs' potential. We here report a novel technology that can overcome all the limitations of current methods and provide a physiologically-relevant culture microenvironment. With this technology, iPSCs are processed into and cultured in microscale alginate hydrogel tubes (termed SFIT or stress-free intratubular cell culture) that are suspended in the cell culture medium in a culture vessel (Figs. 1A and B). The hydrogel tubes create free microspaces that allow cells to interact with each other and expand. Meanwhile, they protect cells from hydrodynamic stresses in the culture vessel and confine the cell mass <400 μm (in radial diameter) to ensure efficient mass transport during the entire culture (Figs. 1A and B). This technology is simple, scalable, defined and cGMP-compliant that make it commercially viable. We showed that, under optimized culture conditions, SFIT offered paradigm-shifting improvements in cell viability, growth, yield, culture consistency and scalability over current methods. We demonstrated long-term culturing (>10 passages) of iPSCs without uncontrolled differentiation and chromosomal abnormalities. Cultures between batches and cell lines were very consistent. iPSCs in SFIT had high viability, growth rate (1000-fold/10 days/passage in general) and yield (~5×10^8 cells/mL microspace). The expansion per passage (e.g. up to 4200-fold/passage was achieved) and volumetric yield are much higher than current methods. The high yield and high expansion fold significantly reduce the culture volume and time, numbers of passaging operations, and the production cost, making large-scale cell production technically and conically feasible. iPSCs could be efficiently differentiated into various tissues cells in SFIT. Additionally, we have shown other human cells, such as T cells, could also be efficiently cultured in this technology. Two SFIT-based automated bioreactors for producing autologous and allogenic iPSCs and their derivatives are under developing. This technology has high potential to address the cell manufacturing challenge. Details of the method can be found in very-recent publications: Biofabrication. Doi: 10.1088/1758-5090/aaa6b5; Sci Rep. doi: 10.1038/s41598-018-21927-4; ACS Appl Mater Interfaces, doi: 10.1021/acsami.8b05780; Adv Healthc Mater, doi: 10.1002/adhm.201701297.
机译:人类诱导的多能干细胞(iPSC)及其衍生物是各种生物医学应用中所需要的。但是,高质量iPSC及其衍生产品的可扩展且具有成本效益的制造仍然是一个挑战。在体内,细胞位于3D微环境中,该环境具有大量的细胞-细胞和细胞-ECM(细胞外基质)相互作用,营养物质和氧气的充足供应,以及最小的流体动力应力。然而,当前的iPSC培养方法提供了高压力的培养微环境,导致低培养效率。例如,我们和其他人表明,在目前的3D悬浮培养条件下,iPSCs通常扩增4倍/ 4天,产量约为2.0×10 ^ 6细胞/ mL。这些细胞约占生物反应器体积的0.4%。据我们所知,迄今为止,iPSC的最大培养量不足10升。迫切需要开发新的培养技术,以实现iPSC的潜力。我们在这里报告了一种新技术,该技术可以克服当前方法的所有局限性,并提供与生理相关的培养微环境。借助这项技术,iPSC被处理并悬浮在微型藻酸盐水凝胶管(称为SFIT或无应力管内细胞培养物)中,并悬浮在培养皿中的细胞培养基中(图1A和B)。水凝胶管产生自由的微空间,使细胞彼此相互作用并膨胀。同时,它们保护细胞免受培养容器中的流体动力应力的影响,并限制<400μm(径向直径)的细胞质量,以确保整个培养过程中的有效质量转移(图1A和B)。该技术简单,可扩展,已定义且符合cGMP,使其在商业上可行。我们表明,在最佳培养条件下,SFIT与现有方法相比,在细胞活力,生长,产量,培养一致性和可扩展性方面提供了范式转移的改进。我们证明了iPSC的长期培养(> 10代)没有不受控制的分化和染色体异常。批次和细胞系之间的培养非常一致。 SFIT中的iPSC具有很高的生存力,生长速率(一般为1000倍/ 10天/传代)和产量(〜5×10 ^ 8细胞/ mL微空间)。每通道的膨胀(例如,达到每通道4200倍)和体积产率比当前方法高得多。高产量和高扩增倍数显着减少了培养体积和时间,减少了传代操作的次数,降低了生产成本,从而使大规模细胞生产在技术上和圆锥形上都是可行的。 iPSCs可以有效地分化为SFIT中的各种组织细胞。另外,我们已经显示了其他人类细胞,例如T细胞,也可以在这项技术中进行有效培养。目前正在开发两个基于SFIT的自动生物反应器,用于生产自体和异源iPSC及其衍生物。该技术具有解决电池制造挑战的巨大潜力。该方法的详细信息可以在最近的出版物中找到:生物制造。 Doi:10.1088 / 1758-5090 / aaa6b5; Sci Rep.doi:10.1038 / s41598-018-21927-4; ACS应用材料接口,doi:10.1021 / acsami.8b05780; Adv Healthc Mater,doi:10.1002 / adhm.201701297。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号