首页> 外文会议>Cell culture engineering XV >UNDERSTANDING AND CONTROLLING SIALYATION IN A CHO FUSION PROTEIN AT LAB AND MANUFACTURING SCALE USING TARGETED OMICS TECHNIQUES
【24h】

UNDERSTANDING AND CONTROLLING SIALYATION IN A CHO FUSION PROTEIN AT LAB AND MANUFACTURING SCALE USING TARGETED OMICS TECHNIQUES

机译:在实验室融合蛋白中了解和控制唾液酸化作用,并使用有针对性的omics技术制造规模

获取原文
获取原文并翻译 | 示例

摘要

Biologics, including antibodies, hormones and cytokines, represent an increasingly important class of therapeutics, with 7 of the 10 top selling drugs from 2013 in this class. The glycosylation distribution of these proteins is an important characteristic that can impact biological activity, circulatory half-life, and immunogenicity. One property that affects glycoproteins is the terminal addition of N-acetylneuraminic acid (sialic acid) to glycosylation chains. Despite the importance of glycosylation in many therapeutic proteins, limited information is available to date linking process parameters to changes in glycosylation distribution. The majority of the work that has been done is limited to a small number of proteins (such as interferon gamma) and small scale systems (shake flasks and bench top bioreactors). Although this work represents a useful starting point, glycosylation is a parameter that is known to be influenced by production scale. Here we examine a glycosylated CHO fusion protein for which sialyation level is known to impact protein quality. Variation in this parameter was observed across pilot and manufacturing scale batches. In order to better understand and control the biological source of the variation in the process, we employed metabolomic and transcriptomic methods, and successfully identified metabolic biomarkers, such as extracellular mannose, for sialylation level. Additional studies demonstrated that changes to sugar metabolism were contributing to a buildup of intermediates and inhibition of glycan sialyation, thereby identifying the biological source of variation in the process. As a result of these studies, we evaluated the impact of process modifications including feed composition and gassing to enable consistent control of sialyation profiles. This work represents a novel contribution to the field. We examine sialyation control of a CHO fusion protein at laboratory and manufacturing scale. Furthermore, we combine 'Omics techniques with bioprocess and analytical data to achieve a more detailed understanding of cell expression and metabolism, and leverage this understanding to refine the process and control a quality attribute. Finally, this approach can be generalized beyond this specific process and applied to additional cell lines where undesired process variation is observed.
机译:包括抗体,激素和细胞因子在内的生物制剂代表了越来越重要的一类治疗剂,2013年该类别中10种最畅销的药物中有7种属于此类。这些蛋白质的糖基化分布是重要的特征,可以影响生物活性,循环半衰期和免疫原性。影响糖蛋白的一种特性是将N-乙酰神经氨酸(唾液酸)末端加到糖基化链上。尽管糖基化在许多治疗性蛋白质中很重要,但迄今为止尚缺乏有限的信息将过程参数与糖基化分布的变化联系起来。已完成的大部分工作仅限于少量蛋白质(例如干扰素γ)和小规模系统(摇瓶和台式生物反应器)。尽管这项工作代表了一个有用的起点,但是糖基化是已知受生产规模影响的参数。在这里,我们检查了一种糖基化的CHO融合蛋白,其唾液酸水平已知会影响蛋白质量。在中试规模和制造规模批次中均观察到此参数的变化。为了更好地理解和控制该过程中变异的生物学来源,我们采用了代谢组学和转录组学方法,并成功鉴定了唾液酸化水平的代谢生物标志物,例如细胞外甘露糖。进一步的研究表明,糖代谢的变化有助于中间体的积累和聚糖唾液酸化的抑制,从而确定了过程中变异的生物学来源。这些研究的结果是,我们评估了工艺修改的影响,包括进料组成和排气,以实现对唾液酸分布的一致控制。这项工作代表了对该领域的新颖贡献。我们在实验室和生产规模上检查CHO融合蛋白的唾液酸化控制。此外,我们将'Omics技术与生物过程和分析数据相结合,以获得对细胞表达和代谢的更详细的了解,并利用这种理解来完善过程并控制质量属性。最后,该方法可以推广到该特定过程之外,并应用于观察到不希望有的过程变化的其他细胞系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号