首页> 外文会议>Biomedical Applications of Micro- and Nanoengineering II; Progress in Biomedical Optics and Imaging; vol.5 no.34 >Magneto-Mechanical Bone Growth Stimulation by Actuation of Highly Porous Ferromagnetic Fibre Arrays
【24h】

Magneto-Mechanical Bone Growth Stimulation by Actuation of Highly Porous Ferromagnetic Fibre Arrays

机译:通过驱动高度多孔的铁磁纤维阵列来刺激磁机械骨生长。

获取原文
获取原文并翻译 | 示例

摘要

This work relates to porous material made by bonding together fibres of a magnetic material. When subjected to a magnetic field, the array deforms, with individual fibres becoming magnetised along their length and then tending to line up locally with the direction of the field. An investigation is presented into the concept that this deformation could induce beneficial strains in bone tissue network in the early stages of growth as it grows into the porous fibre array. An analytical model has been developed, based on the deflection of individual fibre segments (between joints) experiencing bending moments as a result of the induced magnetic dipole. The model has been validated via measurements made on simple fibre assemblies and random fibre arrays. Work has also been done on the deformation characteristics of random fibre arrays with a matrix filling the inter-fibre space. This has the effect of reducing the fibre deflections. The extent of this reduction, and an estimate of the maximum strains induced in the space-filling material, can be obtained using a simple force balance approach. Predictions indicate that in-growing bone tissue, with a stiffness of around 0.01-0.1 GPa, could be strained to beneficial levels (~1 millistrain), using magnetic field strengths hi current diagnostic use (~1 Tesla), provided the fibre segment aspect ratio is at least about 10. Such material has a low Young's modulus, but the overall stiffness of a prosthesis could be matched to that of cortical bone by using an integrated design involving a porous magneto-active layer bonded to a dense non-magnetic core.
机译:该工作涉及通过将磁性材料的纤维粘合在一起而制成的多孔材料。当受到磁场作用时,阵列变形,单个纤维沿其长度方向被磁化,然后趋向于与磁场方向局部对齐。提出了一个研究概念,即这种变形在生长到多孔纤维阵列中时,可以在生长的早期阶段在骨骼组织网络中诱导有益的应变。已经建立了一个分析模型,该模型基于单个纤维段(在接头之间)的偏转(由于感应的磁偶极子而引起的弯矩)。该模型已通过在简单光纤组件和随机光纤阵列上进行的测量进行了验证。还对矩阵填充纤维间空间的随机纤维阵列的变形特性进行了研究。这具有减小光纤挠度的作用。可以使用简单的力平衡方法获得这种减小的程度以及对在空间填充材料中引起的最大应变的估计。预测表明,使用当前的磁场强度(〜1特斯拉),只要纤维段的长宽比,刚生长的骨组织(刚度在0.01-0.1 GPa左右)可以被拉紧至有益水平(〜1 Millistrain)。比率至少约为10。这种材料的杨氏模量低,但假体的整体刚度可以通过使用集成设计来与皮质骨相匹配,该设计包括将多孔磁活性层粘结到致密的非磁性核上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号