首页> 外文会议>Biofabrication for hierarchical in vitro tissue models >MULTIPHOTON LITHOGRAPHY OF 3D HYDROGEL STRUCTURES WITHIN MICROFLUIDIC CHIPS
【24h】

MULTIPHOTON LITHOGRAPHY OF 3D HYDROGEL STRUCTURES WITHIN MICROFLUIDIC CHIPS

机译:微流体芯片内3D水凝胶结构的多光子照相术

获取原文
获取原文并翻译 | 示例

摘要

Multiphoton lithography (MPL) is a 3D printing approach based on localized polymerization of materials induced by femtosecond laser pulses. This technology can produce complex 3D structures with remarkably high spatial resolution, down to submicron range. Furthermore, in contrast to other 3D printing technologies, MPL produces structures within the volume of the sample, without the necessity to deposit the material layer-by-layer. Being an optical technology closely related to microscopy, MPL is also well compatible with microfluidic technology. We have used this capacity of MPL to produce 3D hydrogel structures directly within the microfluidic chips. The photosensitive hydrogel formulations can be injected into the microfluidic channels, by this way enabling MPL within already assembled chips. In the subsequent step the microfluidic chip is perfused with PBS or cell culture medium in order to remove the unpolymerized material. This approach allows to test different materials, construct geometries and cell types with the same set of microfluidic chips without changing their initial design or fabrication process. Furthermore, by producing 3D cell traps, it is possible to position the cells at the desired location within the microfluidic channel. Our results demonstrate the general practicability of MPL for producing complex cell-containing 3D constructs within the microfluidic chips. This approach opens exciting perspectives towards realization of 3D tissue models and organ-on-a-chip devices.
机译:多光子光刻(MPL)是一种3D打印方法,基于飞秒激光脉冲引起的材料的局部聚合。这项技术可以产生复杂的3D结构,具有极高的空间分辨率,甚至可以达到亚微米范围。此外,与其他3D打印技术相比,MPL可以在样品体积内产生结构,而无需逐层沉积材料。作为与显微镜密切相关的光学技术,MPL还与微流体技术很好地兼容。我们已经利用MPL的这种能力直接在微流控芯片内产生3D水凝胶结构。可以将光敏水凝胶制剂注射到微流体通道中,从而使MPL可以在已组装的芯片中。在随后的步骤中,将微流控芯片灌注PBS或细胞培养基,以去除未聚合的物质。这种方法允许使用同一组微流体芯片测试不同的材料,构造几何形状和细胞类型,而无需更改其初始设计或制造过程。此外,通过产生3D细胞陷阱,可以将细胞定位在微流体通道内的所需位置。我们的结果证明了MPL在微流控芯片内生产复杂的含细胞3D构建体的普遍实用性。这种方法为实现3D组织模型和片上器官设备打开了令人兴奋的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号