首页> 外文会议>Bioelectronics, biomedical, and bioinspired systems V; and Nanotechnology V >Front-end electronics for impedimetric microfluidic devices
【24h】

Front-end electronics for impedimetric microfluidic devices

机译:阻抗微流控设备的前端电子设备

获取原文
获取原文并翻译 | 示例

摘要

Impedance spectroscopy is a common approach in assessing passive electrical properties of biological matter, however, serious problems appear in microfluidic devices in connection with distortion free signal acquisition from microelectrodes. The quality of impedance measurements highly depends on the presence of stray capacitances, signal distortions, and accompanying noises. Measurement deficiencies may be minimized with optimized electronics and sensing electrodes. The quality can further be improved with appropriate selection of measuring signals and also with selection of measuring methods such as a choice between current or voltage sources and between differential or singleended techniques. The microfluidic device that we present here incorporates an impedance sensor, which consists of an array of two sequential pairs of parallel microelectrodes, embedded in a microfluidic channel. All electronics and fluidic components are placed inside a metal holder, which ensures electric and fluidic connections to peripheral instruments. This configuration provides short electric connections and proper shielding. The method that we are using to evaluate the sample's impedance is the differential measurement technique, capable of suppressing the common mode signals and interferences, appearing in the signal-conditioning front-end circuit. Besides, it opens the possibility for compensating stray effects of the electrodes. For excitation we employ wideband signals, such as chirps or multifreqyency signals, which allow fast measurements, essential in the most impedimetric experiments in biology. The impedance spectra cover the frequency range between 10kHz - 10MHz. This is essential for accessing information relating to β-dispersion, which characterizes the cell's structural properties. We present two measurement schemes: (i) an in-phase differential method, which employs two transimpedance amplifiers, and (ii) an anti-phase method, which uses one transimpedance amplifier. In this study we analyze and compare the sensitivity, signal-to-noise-ratio, and operational bandwidths of these two methods against other commonly used related circuits.
机译:阻抗谱是评估生物物质的无源电特性的常用方法,但是,与从微电极获取无失真信号有关的微流体装置中出现了严重的问题。阻抗测量的质量在很大程度上取决于杂散电容,信号失真和伴随的噪声的存在。优化的电子设备和感应电极可将测量缺陷降至最低。通过适当选择测量信号以及选择测量方法(例如在电流或电压源之间以及在差分或单端技术之间进行选择),可以进一步提高质量。我们在此介绍的微流体设备包含一个阻抗传感器,该传感器由嵌入在微流体通道中的两对连续的平行微电极对组成。所有电子设备和流体组件都放置在金属支架内,以确保与外围仪器的电气和流体连接。这种配置提供短的电连接和适当的屏蔽。我们用来评估样本阻抗的方法是差分测量技术,该技术能够抑制出现在信号调理前端电路中的共模信号和干扰。此外,这为补偿电极的杂散效应提供了可能性。对于激励,我们采用宽带信号,例如线性调频脉冲或多频信号,可以进行快速测量,这是生物学中最具有阻抗性的实验所必需的。阻抗谱覆盖10kHz-10MHz之间的频率范围。这对于访问表征细胞结构特性的有关β分散的信息至关重要。我们提出了两种测量方案:(i)采用两个互阻抗放大器的同相差分方法,以及(ii)使用一个互阻抗放大器的反相方法。在这项研究中,我们分析和比较了这两种方法与其他常用相关电路的灵敏度,信噪比和工作带宽。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号