首页> 外文会议>Biochemical and molecular engineering XX: the next generation of biochemical engineering: from nanoscale to industrial scale >NOVEL CLONE SELECTION TECHNIQUE REVEALS HETEROGENEITY AMONG HEK293T CELLS ENGINEERED TO PRODUCE THERAPEUTIC EXTRACELLULAR VESICLES
【24h】

NOVEL CLONE SELECTION TECHNIQUE REVEALS HETEROGENEITY AMONG HEK293T CELLS ENGINEERED TO PRODUCE THERAPEUTIC EXTRACELLULAR VESICLES

机译:新颖的克隆选择技术揭示了可产生治疗性细胞外囊泡的HEK293T细胞之间的异质性

获取原文
获取原文并翻译 | 示例

摘要

HEK293T cells have been engineered to produce extracellular vesicles (EVs) that deliver miR-199a-3p to CD44+ hepatocellular carcinoma cells. Restoration of this miRNA has been shown to slow cancer progression in-vitro. Isolation and analysis of EVs from cell culture media containing selection agent revealed that the number of miRNA-199a-3p copies was less than the number of cells in culture suggesting that not all cells produce therapeutic EVs. Therefore, therapeutic EV production can be significantly increased by selecting the HEK293T clones that produce the most therapeutic EVs. While clone selection is traditionally accomplished by cell analysis techniques such as fluorescence activated cell sorting (FACS), detection of therapeutic EVs poses a unique challenge in that cellular expression of miRNA-199a-3p does not necessarily correlate to the amount of exosomal miRNA-199a-3p. In response to this challenge, a fibrous microwell array was developed to screen thousands of clones for therapeutic EV productivity (figure 1). The fibrous microwell system is able to evaluate cell growth rate under fluid shear stress, EV productivity and EV characterization using fluorescently labeled antibodies or cationic lipoplex nanoparticles (detect presence of miRNA-199a-3p inside captured EVs produced by single clones). The most productive clones can be released from the microwells and grown in large scale cell culture to significantly increase therapeutic EV production.
机译:HEK293T细胞已经过工程改造,可产生可将miR-199a-3p递送至CD44 +肝细胞癌细胞的细胞外囊泡(EV)。已证明恢复该miRNA可以减缓体外癌症的发展。从含有选择剂的细胞培养基中分离和分析EV,发现miRNA-199a-3p拷贝数少于培养中的细胞数,这表明并非所有细胞都能产生治疗性EV。因此,通过选择产生最多治疗性电动汽车的HEK293T克隆,可以显着增加治疗性电动汽车的生产。传统上,克隆选择是通过细胞分析技术(例如荧光激活细胞分选(FACS))完成的,但治疗性EV的检测提出了一个独特的挑战,因为miRNA-199a-3p的细胞表达不一定与外泌体miRNA-199a的数量相关-3p。为了应对这一挑战,开发了一种纤维微孔阵列,以筛选成千上万个用于治疗性EV生产能力的克隆(图1)。纤维微孔系统能够使用荧光标记的抗体或阳离子脂质复合物纳米颗粒评估流体剪切应力,EV生产率和EV表征下的细胞生长速率(检测单个克隆产生的EV内是否存在miRNA-199a-3p)。可以从微孔中释放出最具生产力的克隆,并在大规模细胞培养中生长以显着提高治疗性EV的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号