【24h】

Kinetics of Titania Reduction by Methane-Hydrogen Gas

机译:甲烷-氢气还原二氧化钛的动力学

获取原文
获取原文并翻译 | 示例

摘要

Titania is effectively reduced to titanium oxycarbide by the methane-hydrogen-argon gas mixture in the temperature range of 1523-1773K. Reduction of titania to titanium oxycarbide occurs in the following sequence: TiO_2→Ti_5O_9→Ti_4O_7 →Ti_3O_5→Ti_2O_3→(TiO-TiC)_(ss). At 1673-1773K, extent of reduction of titania to titanium oxycarbide, defined as percentage of oxygen removed, achieves more than 85% (according to LECO analysis) in about 90 min. This means that the TiO-TiC solid solution contains about 70 wt% of TiC. The reduction process was modeled using two-interface shrinking core model by approximating the process with two reactions: reduction of titania to Ti_2O_3 and reduction of Ti_2O_3 to the TiC-TiO solid solution. The calculated results are close to the experimental data at temperature range 1473-1773K and methane partial pressure up to 8 kPa. Within the range of methane partial pressure up to 8 kPa the reaction of titania reduction to Ti_2O_3 is of first order with respect to methane and hydrogen partial pressures. The apparent activation energy of the reaction is 124 kJ/mol. The reduction rate of Ti_2O_3 to TiC-TiO solid solution is of first order with respect to methane partial pressure and is independent of hydrogen partial pressure. However, hydrogen suppresses methane cracking and carbon deposition. The apparent activation energy of the reaction is 161 kJ/mol. Beyond 8 kPa in methane partial pressure causes excessive methane cracking with solid carbon deposition, which hinders access of the reducing gas and decreases carbon activity in the system. Similar effect has an increase in temperature above 1723K. To depress the deposition of solid carbon hydrogen partial pressure in the reducing gas should be above 35 kPa (at 1573K and 5 kPa CH_4). Optimum conditions for titanium carbide synthesis from titania and methane-hydrogen-argon gas mixture include temperature in the range 1573-1723K, methane content of 8 vol% and hydrogen content above 35 vol%.
机译:在1523-1773K的温度范围内,甲烷-氢-氩气体混合物可将二氧化钛有效还原为碳氧化钛。二氧化钛还原成碳氧化钛的顺序如下:TiO_2→Ti_5O_9→Ti_4O_7→Ti_3O_5→Ti_2O_3→(TiO-TiC)_(ss)。在1673-1773K,二氧化钛还原为碳氧化钛的程度(定义为除氧百分比)在约90分钟内达到了85%以上(根据LECO分析)。这意味着TiO-TiC固溶体包含约70重量%的TiC。使用两界面收缩核模型对还原过程进行建模,方法是通过两个反应近似该过程:将二氧化钛还原成Ti_2O_3和将Ti_2O_3还原成TiC-TiO固溶体。计算结果接近于在1473-1773K温度范围和高达8 kPa的甲烷分压下的实验数据。在甲烷分压高达8kPa的范围内,二氧化钛还原成Ti_2O_3的反应相对于甲烷和氢分压是一阶的。反应的表观活化能为124kJ / mol。 Ti_2O_3对TiC-TiO固溶体的还原速率相对于甲烷分压而言是一阶的,并且与氢分压无关。但是,氢会抑制甲烷裂解和碳沉积。反应的表观活化能为161kJ / mol。甲烷分压超过8 kPa会导致甲烷过度裂解并产生固体碳,这会阻碍还原性气体的进入并降低系统中的碳活度。类似的效果是温度升高到1723K以上。为了抑制还原气体中固体碳氢的沉积,分压应高于35 kPa(在1573K和5 kPa CH_4时)。由二氧化钛和甲烷-氢-氩气体混合物合成碳化钛的最佳条件包括温度在1573-1723K范围内,甲烷含量为8%(体积),氢气含量超过35%(vol)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号