首页> 外文会议>Augmented reality environments for medical imaging and computer-assisted interventions >Simultaneous Tensor and Fiber Registration (STFR) for Diffusion Tensor Images of the Brain
【24h】

Simultaneous Tensor and Fiber Registration (STFR) for Diffusion Tensor Images of the Brain

机译:同时张量和纤维配准(STFR)的大脑扩散张量图像

获取原文
获取原文并翻译 | 示例

摘要

Accurate registration of diffusion tensor imaging (DTI) data of the brain among different subjects facilitates automatic normalization of structural and neural connectivity information and helps quantify white matter fiber tract differences between normal and disease. Traditional DTI registration methods use either tensor information or orientation invariant features extracted from the tensors. Because tensors need to be re-oriented after warping, fibers extracted from the deformed DTI often suffer from discontinuity, indicating lack of fiber information preservation after registration. To remedy this problem and to improve the accuracy of DTI registration, in this paper, we introduce a simultaneous tensor and fiber registration (STFR) algorithm by matching both tensor and fiber tracts at each voxel and considering re-orientation with deformation simultaneously. Because there are multiple fiber tracts passing through each voxel, which may have different orientations such as fiber crossing, incorporating fiber information can preserve fiber information better than only using the tensor information. Additionally, fiber tracts also reflect the spatial neighborhood of each voxel. After implementing STFR, we compared the registration performance with the current state-of-the art tensor-based registration algorithm (called DTITK) using both simulated images and real images. The results showed that the proposed STFR algorithm evidently outperforms DTITK in terms of registration accuracy. Finally, using statistical parametric mapping (SPM) package, we illustrate that after normalizing the fractional anisotropy (FA) maps of both traditional developing (TD) and Autism spectrum disorder (ASD) subjects to a randomly selected template space, regions with significantly different FA highlighted by STFR are with less noise or false positive regions as compared with DTITK. STFR methodology can also be extended to high-angular-resolution diffusion imaging and Q-ball vector analysis.
机译:准确记录不同受试者之间的大脑扩散张量成像(DTI)数据,有助于结构和神经连接信息的自动归一化,并有助于量化正常和疾病之间的白质纤维束差异。传统的DTI配准方法使用张量信息或从张量提取的方向不变特征。因为张紧在弯曲后需要重新定向,所以从变形的DTI提取的纤维通常会出现不连续性,这表明在对齐后缺乏纤维信息的保存。为了解决这个问题并提高DTI配准的准确性,在本文中,我们通过同时匹配每个体素上的张量和纤维束并同时考虑变形的重新定向,引入了同时张量和纤维配准(STFR)算法。因为有多个纤维束穿过每个体素,它们可能具有不同的方向(例如纤维交叉),所以合并纤维信息可以比仅使用张量信息更好地保留纤维信息。此外,纤维束还反映了每个体素的空间邻域。实施STFR之后,我们使用模拟图像和真实图像将配准性能与当前基于张量的最新配准算法(称为DTITK)进行了比较。结果表明,所提出的STFR算法在配准精度方面明显优于DTITK。最后,使用统计参数映射(SPM)程序包,我们说明在将传统发展中(TD)和自闭症谱系障碍(ASD)受试者的分数各向异性(FA)图标准化后,随机选择模板空间后,FA显着不同的区域与DTITK相比,由STFR强调的噪声或假阳性区域更少。 STFR方法还可以扩展到高角度分辨率扩散成像和Q球矢量分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号