首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >NUMERICAL INVESTIGATION OF NOx EMISSIONS CHARACTERISTICS OF A NATURAL GAS PREMIXED BURNER BASED ON CHEMICAL REACTOR NETWORK MODEL
【24h】

NUMERICAL INVESTIGATION OF NOx EMISSIONS CHARACTERISTICS OF A NATURAL GAS PREMIXED BURNER BASED ON CHEMICAL REACTOR NETWORK MODEL

机译:基于化学反应器网络模型的天然气预混合燃烧器NOx排放特征的数值研究

获取原文

摘要

Numerical optimization of nitrogen oxides (NOx) formation is an essential factor during developing low pollution combustor of gas turbine. The Computational Fluid Dynamics-Chemical Reactor Network (CFD-CRN) hybrid method has a great advantage in fast and accurate prediction of combustor NOx emissions. In this work, a hybrid CFD-CRN approach is established to predict pollutant emissions of a lean premixed model burner for gas turbine applications. Several criteria are compared for separating the combustor into chemically and physically homogeneous zones, and the crucial parameters such as residence time and flue gas recirculation ratio are calculated. The CRN model is preliminarily verified with experimental data. The effects of pressure and fuel-air unmixedness on NOx formation are subsequently investigated. In addition, the effects of changes in fuel/air flow distribution and crucial parameters of CRN model on NOx emissions are also estimated under different pressures and fuel-air unmixedness. The combustor is divided into several zones including reaction preheating region, flame front region, flame transition region, post flame region, main recirculation region and corner recirculation region based on CFD results of fuel-air mixing characteristics, velocity field, temperature field, distribution of OH mass fraction and Damkohler number. The complex CRN model has the advantage of predicting NOx emission characteristics under higher T_(ad) conditions compared with the simple model, and its prediction of NOx emission shows good agreement with experimental data under various equivalence ratio conditions. The structure and distribution of several regions of CRN model are analogous but not significant when Reynolds number exceeds 10~5 under high pressure. The pathway analysis shows that the NOx emission gradually decreases through N_2O and NNH mechanisms, resulted from the decreasing concentration of O radical under low Tad and high pressure. However, the pressure could significantly promote thermal NOx formation resulting form increase of temperature. The fuel-air unmixedness results in the increase of maximum flame temperature, which has significant effect on change of the CRN regions-separating. The fuel-air unmixedness causes the significant increasing of thermal NOx formation.
机译:氮氧化物(NOx)形成的数值优化是开发燃气轮机低污染燃烧室的重要因素。计算流体动力学-化学反应器网络(CFD-CRN)混合方法在快速准确地预测燃烧室NOx排放方面具有很大优势。在这项工作中,建立了混合CFD-CRN方法来预测燃气轮机应用的稀薄预混模型燃烧器的污染物排放。比较了将燃烧器分为化学和物理均质区域的几个标准,并计算了关键参数,例如停留时间和烟气再循环率。 CRN模型已通过实验数据进行了初步验证。随后研究了压力和燃料-空气不混合度对NOx形成的影响。此外,还估算了在不同压力和燃料-空气不混合情况下,燃料/空气流量分布的变化和CRN模型的关键参数对NOx排放的影响。根据燃料-空气混合特性,速度场,温度场,CFD分布的CFD结果将燃烧器分为几个区域,包括反应预热区,火焰前区,火焰过渡区,火焰后区,主再循环区和转角再循环区。 OH质量分数和Damkohler数。与简单模型相比,复杂的CRN模型具有在较高T_(ad)条件下预测NOx排放特征的优势,并且其NOx排放的预测与各种当量比条件下的实验数据吻合良好。当雷诺数在高压下超过10〜5时,CRN模型的几个区域的结构和分布是相似的,但并不重要。路径分析表明,NOx的排放通过N_2O和NNH机理逐渐降低,这是由于在低Tad和高压下O自由基浓度降低所致。然而,压力会显着促进热氮氧化物的形成,这是由于温度升高而引起的。燃料与空气的不混合导致最高火焰温度的升高,这对CRN区域分隔的变化具有重大影响。燃料-空气不混合导致热氮氧化物形成的显着增加。

著录项

  • 来源
  • 会议地点 Phoenix(US)
  • 作者单位

    Key Laboratory of Advanced Energy and Power Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China;

    Key Laboratory of Advanced Energy and Power Institute of Engineering Thermophysics Chinese Academy of Sciences Beijing China Research Center for Clean Energy and Power Chinese Academy of Sciences Lianyungang Jiangsu China University of Chinese Academy of Sciences Beijing China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号