首页> 外文会议>ASME international manufacturing science and engineering conference 2011 >DISLOCATION DENSITY-BASED GRAIN REFINEMENT MODELING OF ORTHOGONAL CUTTING OF COMMERCIALLY PURE TITANIUM
【24h】

DISLOCATION DENSITY-BASED GRAIN REFINEMENT MODELING OF ORTHOGONAL CUTTING OF COMMERCIALLY PURE TITANIUM

机译:基于位移密度的正交纯钛切割的晶粒细化模型

获取原文
获取原文并翻译 | 示例

摘要

Recently, machining has been exploited as a means for producing ultra-fine grained (UFG) and nanocrystalline microstructures for various metal materials, such as aluminum alloys, copper, stainless steel, titanium and nickel-based super alloys, etc. However, no predictive, analytical or numerical work has ever been presented to quantitatively predict the change of grain sizes during machining.In this paper, a dislocation density-based viscoplastic model is adapted for modeling the grain size refinement mechanism during machining by means of a finite element based numerical framework. A novel Coupled Eulerian-Lagrangian (CEL) finite element model embedded with the dislocation density subroutine is developed to model the severe plastic deformation and grain refinement during a steady-state cutting process. The orthogonal cutting tests of a commercially pure titanium (CP Ti) material are simulated in order to assess the validity of the numerical solution through comparison with experiments. The dislocation density-based material model is calibrated to reproduce the observed material constitutive mechanical behavior of CP Ti under various strains, strain rates and temperatures in the cutting process. It is shown that the developed model captures the essential features of the material mechanical behavior and predicts a grain size of 100-160 nm in the chips of CP Ti at a cutting speed of 10 mm/s.
机译:近年来,机械加工已被用作生产各种金属材料(如铝合金,铜,不锈钢,钛和镍基超级合金等)的超细晶粒(UFG)和纳米晶体微结构的手段。以往,已经提出了分析或数值方法来定量地预测加工过程中晶粒尺寸的变化。本文采用基于位错密度的粘塑性模型,通过基于有限元的数值方法对加工过程中晶粒尺寸的细化机理进行建模。框架。建立了嵌入位错密度子程序的新颖的耦合欧拉-拉格朗日有限元模型,以模拟稳态切削过程中的严重塑性变形和晶粒细化。模拟了商业纯钛(CP Ti)材料的正交切削试验,以便通过与实验进行比较来评估数值解的有效性。对基于位错密度的材料模型进行校准,以再现切削过程中在各种应变,应变速率和温度下所观察到的CP Ti的材料本构力学行为。结果表明,所开发的模型捕获了材料力学行为的基本特征,并以10 mm / s的切削速度预测了CP Ti芯片中100-160 nm的晶粒尺寸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号