【24h】

FRACTIONAL OPTIMAL CONTROL OF A DISTRIBUTED SYSTEM USING EIGENFUNCTIONS

机译:基于特征函数的分布式系统的分数最优控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a formulation and a numerical scheme for Fractional Optimal Control (FOC) for a class of distributed systems. The fractional derivative is defined in the Caputo sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equations (PFDEs). Eigenfunctions are used to eliminate the space parameter, and to define the problem in terms of a set of state and control variables. This leads to a multi FOCP in which each FOCP could be solved independently. Several other strategies are pointed out to reduce the problem to a finite dimensional space, some of which may not provide a decoupled set of equations. The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler-Lagrange equations for the problem. The numerical technique presented in [1] is used to obtain the state and the control variables. In this technique, the FOC equations are reduced to Volterra type integral equations. The time domain is descretized into several segments and a time marching scheme is used to obtain the response at discrete time points. For a linear case, the numerical technique results into a set of algebraic equations which can be solved using a direct or an iterative scheme. The problem is solved for different number of eigenfunctions and time discretizations. Numerical results show that only a few eigenfunctions are sufficient to obtain good results, and the solutions converge as the size of the time step is reduced. The formulation presented is simple and can be extended to FOC of other distributed systems.
机译:本文为一类分布式系统提出了分数最优控制(FOC)的公式和数值方案。分数导数在Caputo的意义上定义。 FOCP的性能指标被认为是状态和控制变量的函数,动态约束由偏分数阶微分方程(PFDE)表示。特征函数用于消除空间参数,并根据一组状态和控制变量来定义问题。这导致了一个多FOCP,其中每个FOCP都可以独立解决。指出了其他几种将问题简化为有限维空间的策略,其中某些策略可能无法提供解耦的方程组。使用变分微积分,拉格朗日乘数和零件的分数积分公式来获得问题的欧拉-拉格朗日方程。 [1]中提出的数值技术用于获得状态和控制变量。在这种技术中,FOC方程简化为Volterra型积分方程。时域被细分为几个部分,并且使用时间行进方案来获得离散时间点的响应。对于线性情况,数值技术导致了一组代数方程,可以使用直接或迭代方案求解。针对不同数量的本征函数和时间离散化解决了该问题。数值结果表明,只有很少的本征函数足以获得良好的结果,并且随着时间步长的减小,解收敛。提出的公式很简单,可以扩展到其他分布式系统的FOC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号