首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.6 pt.B; 20070514-17; Montreal(CA) >AERODYNAMIC SHAPE OPTIMIZATION OF TURBINE BLADES USING A DESIGN-PARAMETER-BASED SHAPE REPRESENTATION
【24h】

AERODYNAMIC SHAPE OPTIMIZATION OF TURBINE BLADES USING A DESIGN-PARAMETER-BASED SHAPE REPRESENTATION

机译:基于设计参数的形状表示法对涡轮叶片的气动形状优化

获取原文
获取原文并翻译 | 示例

摘要

Currently, most shape optimization activities for 2D blade sections focus on modifying the blade shape locally to get an optimum one, which implicitly assumes that the global shape is near optimum. Moreover, the common design parameters in most cases are not the variables used in shape optimization, hence the designer does not have control over the parameters that he or she uses in the design. In this work, the turbine blade shape at any given radial location, is represented with the MRATD model (Modified Rapid Axial Turbine Design), which is a low-order representation that describes the blade profile using a maximum of 17 aerodynamic design parameters that are given (and used) by the turbine designer, e.g. the blade axial chord, stagger, maximum thickness, throat, uncovered turning, inlet and exit blade and wedge angles, LE and TE radii etc… This representation is used in an optimization scheme to sweep the design space and identify the design parameters that would accomplish a certain optimization objective (e.g. maximum adiabatic efficiency) subject to some constraints (e.g. fixed throat area or minimum TE radius or maximum TE wedge angle or metal angles etc.). The optimization scheme uses evolutionary optimization algorithm, Genetic Algorithm(GA) and, to save computing time, Artificial Neural Network (ANN) is introduced to approximate the optimization objectives and constraints; it is trained and tested using a relatively small number of high fidelity CFD flow simulations. This approach to geometry representation is used to carry out a sensitivity study of the effect of the different design parameters on the blade performance of a highly efficient subsonic turbineblade. Its impact on the design process is also demonstrated.
机译:当前,大多数2D叶片截面的形状优化活动都集中在局部修改叶片形状以获得最佳形状,这隐含地假设整体形状接近最佳。此外,在大多数情况下,常见的设计参数不是形状优化中使用的变量,因此设计人员无法控制他或她在设计中使用的参数。在这项工作中,涡轮机叶片在任何给定的径向位置的形状都由MRATD模型(改进型快速轴向涡轮机设计)表示,该模型是一种低阶表示形式,它使用最多17个空气动力学设计参数来描述叶片轮廓。由涡轮设计者给出(和使用),例如叶片轴向弦,交错,最大厚度,喉咙,未覆盖的转弯,入口和出口叶片和楔角,LE和TE半径等…此表示形式用于优化方案中,以扫过设计空间并确定将完成的设计参数某个优化目标(例如最大绝热效率)受到某些约束(例如,固定的喉部面积或最小的TE半径或最大的TE楔角或金属角度等)。该优化方案采用进化优化算法,遗传算法(GA),为节省计算时间,引入了人工神经网络(ANN)来近似优化目标和约束。使用相对少量的高保真CFD流动模拟进行训练和测试。这种表示几何的方法用于对不同设计参数对高效亚音速涡轮叶片叶片性能的影响进行敏感性研究。还展示了其对设计过程的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号