首页> 外文会议>ASME(American Society of Mechanical Engineers) Turbo Expo vol.6 pt.B; 20070514-17; Montreal(CA) >UNSTEADY PRESSURE FIELD DUE TO INTERACTIONS AMONG TIP LEAKAGE VORTEX, TRAILING EDGE VORTEX, AND VORTEX SHEDDING IN A DUCTED PROPELLER
【24h】

UNSTEADY PRESSURE FIELD DUE TO INTERACTIONS AMONG TIP LEAKAGE VORTEX, TRAILING EDGE VORTEX, AND VORTEX SHEDDING IN A DUCTED PROPELLER

机译:螺旋桨叶尖涡旋,尾缘涡旋和切旋涡旋相互作用引起的非定常压力场

获取原文
获取原文并翻译 | 示例

摘要

A detailed numerical study was performed to investigate the unsteady flow field near the tip of a ducted propeller blade. The primary objective was to understand the formation of the point of minimum static pressure, where cavitation inception occurs, in a ducted propeller. An experimental study showed that cavitation inception (minimum static pressure) occurs at about 50% blade chord downstream of the rotor trailing edge, while conventional estimation predicts it about 10% blade chord downstream in the tip leakage vortex. Steady flow analysis, which indicates that the minimum static pressure occurs about 15% axial chord downstream in the tip leakage vortex, does not calculate measured cavitation inception correctly. The flow field near the tip section is unsteady due to interactions among the tip leakage vortex, the trailing edge vortex, and vortex shedding in the wake. Because the steady flow analysis does not reproduce the measured minimum static pressure location in the current rotor, it was suspected that the observed phenomenon was due to some unsteady flow phenomenon in the tip region.To capture relevant unsteady flow physics as much as possible, a large eddy simulation (LES) was applied to the current investigation. The present study reveals that periodic interaction between the tip leakage vortex and the trailing edge vortex initially creates a local low pressure point about 15% blade chord downstream. As the tip leakage vortex flows downstream, it is bent and stretched by the interaction between the shed trailing edge vortex and the tip leakage vortex originating from the adjacent blade interaction. This stretching of the tip leakage vortex creates a new lower local pressure core in the tip leakage vortex. The current unsteady flow simulation shows that the minimum pressure point, where cavitation inception occurs, is observed intermittently at about 50% blade chord downstream of the trailing edge, as the measurement shows.
机译:进行了详细的数值研究,以研究导管螺旋桨叶片尖端附近的非恒定流场。主要目的是了解导管式螺旋桨中产生空化开始的最小静压点的形成。实验研究表明,在转子后缘下游约50%的叶片翼弦处会发生气蚀现象(最小静压),而常规估算预计在叶尖泄漏涡流下游约10%的叶片翼弦会发生气蚀。稳态流动分析表明,最小静压出现在尖端泄漏涡流下游约15%的轴向弦上,无法正确计算测得的空化开始。由于尖端泄漏涡,尾缘涡和尾流中的涡流之间的相互作用,尖端部分附近的流场不稳定。由于稳态流动分析不能重现当前转子中测得的最小静压位置,因此怀疑观察到的现象是由于尖端区域中存在一些非稳态流动现象所致。大涡模拟(LES)应用于当前研究。本研究表明,叶尖泄漏涡流与后缘涡流之间的周期性相互作用最初会在下游产生约15%叶片弦的局部低压点。当叶尖漏气涡流向下游流动时,它通过棚尾后缘涡流和源自相邻叶片相互作用的叶尖漏气涡流之间的相互作用而弯曲和拉伸。尖端泄漏涡流的这种拉伸在尖端泄漏涡流中产生了新的较低的局部压力芯。当前的非稳态流动模拟表明,在后缘下游约50%的叶片翼弦上断断续续地观察到出现空化现象的最小压力点,如测量所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号