首页> 外文期刊>Journal of Fluid Mechanics >Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding
【24h】

Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding

机译:具有新颖脱落准则的离散涡旋方法,用于不定常翼型流动且具有间歇性前沿涡旋脱落

获取原文
获取原文并翻译 | 示例
       

摘要

Unsteady aerofoil flows are often characterized by leading-edge vortex (LEV) shedding. While experiments and high-order computations have contributed to our understanding of these flows, fast low-order methods are needed for engineering tasks. Classical unsteady aerofoil theories are limited to small amplitudes and attached leading-edge flows. Discrete-vortex methods that model vortex shedding from leading edges assume continuous shedding, valid only for sharp leading edges, or shedding governed by ad-hoc criteria such as a critical angle of attack, valid only for a restricted set of kinematics. We present a criterion for intermittent vortex shedding from rounded leading edges that is governed by a maximum allowable leading-edge suction. We show that, when using unsteady thin aerofoil theory, this leading-edge suction parameter (LESP) is related to the A0 term in the Fourier series representing the chordwise variation of bound vorticity. Furthermore, for any aerofoil and Reynolds number, there is a critical value of the LESP, which is independent of the motion kinematics. When the instantaneous LESP value exceeds the critical value, vortex shedding occurs at the leading edge. We have augmented a discrete-time, arbitrary-motion, unsteady thin aerofoil theory with discrete-vortex shedding from the leading edge governed by the instantaneous LESP. Thus, the use of a single empirical parameter, the critical-LESP value, allows us to determine the onset, growth, and termination of LEVs. We show, by comparison with experimental and computational results for several aerofoils, motions and Reynolds numbers, that this computationally inexpensive method is successful in predicting the complex flows and forces resulting from intermittent LEV shedding, thus validating the LESP concept.
机译:不稳定的机翼流动通常以前沿涡旋(LEV)脱落为特征。尽管实验和高阶计算有助于我们理解这些流程,但工程任务需要快速的低阶方法。经典的非稳态翼型理论仅限于小振幅和附加的前沿流。建模从前缘涡旋脱落的离散涡旋方法采用连续脱落,仅对锋利的前缘有效,或由特殊条件(例如临界攻角)控制的脱落,仅对有限的运动学有效。我们提出了从圆形前缘间歇性涡旋脱落的标准,该准则由最大允许前缘吸力控制。我们表明,当使用非恒定薄翼型理论时,该前沿吸力参数(LESP)与代表绑定涡度弦向变化的傅里叶级数中的A0项相关。此外,对于任何翼型和雷诺数,LESP都有一个临界值,它与运动运动学无关。当瞬时LESP值超过临界值时,在前沿出现涡旋脱落。我们增加了离散时间,任意运动,不稳定的薄翼型理论,并从由瞬时LESP控制的前沿分离了离散涡旋。因此,使用单个经验参数(LESS临界值)可以确定LEV的发生,生长和终止。通过与几个翼型,运动和雷诺数的实验和计算结果进行比较,我们表明,这种计算上便宜的方法成功地预测了间歇性LEV脱落导致的复杂流动和力,从而验证了LESP概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号