【24h】

HYDRODYNAMIC MODELING OF DETONATIONS FOR STRUCTURAL DESIGN OF CONTAINMENT VESSELS

机译:容器结构设计的爆轰水动力模型

获取原文
获取原文并翻译 | 示例

摘要

Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), has been conducting confined high explosion experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design of these spherical vessels was originally accomplished by maintaining that the vessel's kinetic energy, developed from the detonation impulse loading, be equilibrated by the elastic strain energy inherent in the vessel. In some cases, the vessel is designed for one-time use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials [1]. Alternatively, the vessel can be designed for multiple use, in which case the material response is restricted to the elastic range [2].Within the last decade, designs have -been accomplished utilizing sophisticated and advanced 3D computer codes that address both the detonation hydrodynamics and the vessel's highly nonlinear structural dynamic response. This paper describes the hydrodynamic modeling of HE reaction products phase, which produces transient pressures resulting in an impulsive load on the vessel shell. Modeling is accomplished through either (a) empirical/analytical methods utilizing a vast experimental database developed primarily for the Department of Defense (DoD) or (b) through application of numerical hydrodynamics codes, such as the Sandia NationalrnLaboratories (SNL) shock-wave physics code, CTH [3], which accurately model the thermochemistry and thermophysics of a detonation. It should be noted that this paper only addresses blast load prediction using the methods stated and does not include an assessment of structural response methods.
机译:在美国能源部(DOE)和国家核安全局(NNSA)的主持下,洛斯阿拉莫斯国家实验室(LANL)一直在利用大型球形钢制压力容器进行反应的密闭高爆炸实验,以容纳反应产物以及来自高爆炸(HE)事件的有害物质。这些球形容器的结构设计最初是通过维持容器的内在弹性应变能来平衡由爆炸脉冲载荷产生的动能来完成的。在某些情况下,该容器仅设计为一次性使用,可有效利用延性容器材料的显着塑性能量吸收能力[1]。或者,该容器可设计成可多次使用,在这种情况下,材料响应仅限于弹性范围[2]。在过去的十年中,利用复杂且先进的3D计算机代码完成了设计,这些代码既解决了爆轰流体力学问题,以及船舶高度非线性的结构动力响应。本文描述了HE反应产物相的流体动力学模型,该模型会产生瞬态压力,从而在容器壳上产生脉冲载荷。可以通过(a)利用主要为国防部(DoD)开发的庞大实验数据库的经验/分析方法来完成建模,或者通过(b)应用数字流体力学代码(例如Sandia NationalrnLaboratories(SNL)冲击波物理学)来完成建模。代码CTH [3],可精确地模拟爆炸的热化学和热物理。应该注意的是,本文仅使用所述方法处理爆炸载荷预测,不包括结构响应方法的评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号