首页> 外文会议>ASC 18th annual technical conference >Self-Healing for Improved Fatigue Life
【24h】

Self-Healing for Improved Fatigue Life

机译:自我修复以改善疲劳寿命

获取原文
获取原文并翻译 | 示例

摘要

A novel approach is explored for improving the fatigue life of thermosetting polymers through thernaddition of self-healing functionality. Thermosetting polymers are used in a wide variety ofrnapplications ranging from composite structures to adhesive joints to microelectronic packaging. Duernto their low strain-to-failure these polymers are highly susceptible to damage in the form of cracks.rnFatigue loading is particularly problematic, giving rise to the initiation and propagation of smallrncracks deep within the structure where detection is difficult and repair is virtually impossible. Theserncracks often lead to catastrophic failure of the material. We utilize a strategy based on recentrndevelopments in self-healing technology to autonomically repair fatigue cracks and extend thernservice-life of many polymeric components. The material under investigation is an epoxy matrixrncomposite, which utilizes embedded microcapsules to store a healing agent and an embeddedrncatalyst. A propagating crack exposes particles of catalyst and ruptures the microcapsules, whichrnrelease healing agent into the crack plane. Polymerization of the healing agent is triggered byrncontact with the catalyst, which bonds the crack faces closed.rnA comprehensive experimental program is carried-out to assess the fatigue behavior of arnself-healing polymer. The testing program has two primary thrusts. The first is to obtain the inherentrnfatigue characteristics of the matrix material. In this case the ability to self-heal and the self-healingrneffects on the fatigue behavior are precluded. Here we embed unfilled microcapsules (no healingrnagent) along with the catalyst in the epoxy matrix. The second testing thrust is to characterize thernfatigue characteristics of the self-healing materials system. Fatigue crack propagation in neat epoxyrnand epoxy with embedded microcapsules is accurately captured by the Paris power-law. The slope nrnof the power-law regime is strongly dependent on the content of microcapsules, varying from n = 10rnfor neat epoxy to n = 4 for 10 wt% microcapsules. The inherent fatigue characteristics of the selfhealingrnmaterial and its ability to extend component life are currently being investigated.
机译:探索了一种通过增加自愈功能来改善热固性聚合物疲劳寿命的新方法。热固性聚合物被用于从复合结构到粘合接头再到微电子包装的广泛应用中。这些聚合物的Duernto应变破坏率低,极易受到裂纹形式的破坏。疲劳载荷特别成问题,会导致结构内部深处的小裂纹的产生和扩散,而这些裂纹很难检测到并且几乎无法修复。这些裂纹经常导致材料的灾难性破坏。我们利用自愈技术的最新发展来自动修复疲劳裂纹并延长许多聚合物组件的使用寿命。被研究的材料是环氧基质复合材料,它利用嵌入式微囊来存储治疗剂和嵌入式催化剂。扩展的裂纹会暴露出催化剂颗粒,并使微胶囊破裂,从而将固化剂释放到裂纹平面中。固化剂的聚合是通过与催化剂的接触引起的,从而使裂纹面闭合。进行了全面的实验程序,以评估自恢复聚合物的疲劳行为。测试程序有两个主要目的。首先是获得基体材料的固有疲劳特性。在这种情况下,排除了自我修复的能力以及对疲劳行为的自我修复作用。在这里,我们将未填充的微胶囊(无愈合剂)与催化剂一起嵌入环氧基质中。第二个测试重点是表征自愈材料系统的疲劳特性。巴黎幂律精确地捕获了纯环氧树脂和嵌入微胶囊的环氧树脂中的疲劳裂纹扩展。幂律制度的斜率在很大程度上取决于微胶囊的含量,从纯环氧树脂的n = 10rn到微胶囊的10 wt%的n = 4不等。目前正在研究自愈材料的固有疲劳特性及其延长部件寿命的能力。

著录项

  • 来源
  • 会议地点 Gainesville FL(US)
  • 作者单位

    Department of Theoretical Applied Mechanics and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 216 Talbot Lab, 104 S Wright St,rnUrbana, IL 61801;

    Department of Aerospace Engineering and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S Wright St, Urbana, IL 61801;

    Department of Theoretical Applied Mechanics and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 216 Talbot Lab, 104 S WrightrnSt, Urbana, IL 61801.;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 复合材料;
  • 关键词

    Self-healing; autonomic-healing; fatigue; microcapsule; artificial crack closure;

    机译:自我修复;自主治疗疲劳;微胶囊人工裂缝封闭;
  • 入库时间 2022-08-26 14:26:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号