【24h】

SINGLE PARTICLE DAMAGE EVENTS IN CANDIDATE STAR CAMERA SENSORS

机译:候选星型相机传感器中的单颗粒损伤事件

获取原文
获取原文并翻译 | 示例

摘要

Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (UV) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature.
机译:硅电荷耦合器件(CCD)目前是星空摄像机以及近紫外(UV)到可见光波长区域中的杰出探测器,用于太空和对地观测太空任务中的天文观测。不幸的是,CCD的性能会因总电离剂量(TID)和位移损伤效应而永久降低。 TID在CCD栅极上产生阈值电压偏移,位移损坏会降低电荷转移效率(CTE),增加暗电流,产生暗电流不均匀性,并在各个像素中产生随机的电报噪声。除了这些长期影响之外,宇宙射线和捕获的质子瞬变还干扰设备在轨道上的运行。在本文中,我们研究了CCD的暗电流行为-特别是热像素的形成和退火。这样的像素会降低CCD进行科学工作的能力,还会给星型相机功能的性能带来问题(特别是如果未正确预期其数量)。迄今为止,大多数暗电流辐射研究都是通过在室温下照射CCD来进行的,但这可能会导致热像素数量的图像变得非常乐观。从哈勃太空望远镜(HST)我们知道,高暗电流像素(所谓的热像素或热尖峰)会随着时间的推移在轨道上积累。例如,尽管损失了观察时间,但用于测量的HST高级摄像机/宽视场摄像机仪器每月进行一次退火,以便部分退火热像素。注意,由于在这样的低温下Si退火中通常没有预期的缺陷(例如,空位,E中心和A中心),因此目前尚不了解对于室温退火会发生热像素数量显着减少的事实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号