【24h】

LINE OF SIGHT STABILIZATION FOR THE JAMES WEBB SPACE TELESCOPE

机译:James WEBB空间望远镜的视线稳定度

获取原文
获取原文并翻译 | 示例

摘要

The James Webb Space Telescope (JWST) builds upon the successful flight experience of the Chandra Xray Telescope (CXO) by incorporating an additional LOS pointing servo to meet the more stringent pointing requirements. The LOS pointing servo, referred to in JWST as the Fine Guidance Control System (FGCS), will utilize a Fine Guidance Sensor (FGS) as the sensor, and a Fine Steering Mirror (FSM) as the actuator. The FSM is a part of the Optical Telescope Element (OTE) and is in the optical path between the tertiary mirror and the instrument focal plane, while the FGS is part of the Integrated Science Instrument Module (ISIM). The basic Chandra spacecraft bus attitude control and determination architecture, utilizing gyros, star trackers/aspect camera, and reaction wheels, is retained for JWST. This system has achieved pointing stability of better than 0.5 arcseconds. To reach the JWST requirements of milli-arcsecond pointing stability with this ACS hardware, the local FGCS loop is added to the optical path. The FGCS bandwidth is about 2.0 Hz and will therefore attenuate much of the spacecraft ACS induced low frequency jitter. In order to attenuate the higher frequency (> 2.0 Hz) disturbances associated with reaction wheel static and dynamic imbalances, as well as Gearing run-out, JWST will employ a two-stage passive vibration isolation system consisting of (1) 7.0 Hz reaction wheel isolators between each reaction wheel and the spacecraft bus, and (2) a 1.0 Hz tower isolator between the spacecraft bus and the Optical Telescope Element (OTE). In order to sense and measure the LOS, the FGS behaves much like an autonomous star tracker that has a very small field of view and uses the optics of the telescope. It performs the functions of acquisition, identification and tracking of stars in its 2.5 x 2.5 arcminute field of view (FOV), and provides the centroid and magnitude of the selected star for use in LOS control. However, since only a single star is being tracked at any time within the FGS FOV there is only tip and tilt information; rotation about the FGS LOS will not be sensed. The FGCS uses the FSM to move the guide star within the FGS FOV and place the centroid of the guide star at any desired position within the FGS focal plane. Using this architecture allows the FGCS to correct the low frequency LOS jitter that is induced by the spacecraft ACS in pitch and yaw, and achieve the milli-arcsecond pointing stability required by JWST. The less stringent ISIM FOV roll performance will be provided solely by the ACS, using the spacecraft gyros and star trackers. Since the FSM is in the optical path, the pointing stability of a science object in any of the instruments will be similar to that of the guide star LOS.
机译:詹姆斯·韦伯太空望远镜(JWST)建立在钱德拉X射线望远镜(CXO)的成功飞行经验的基础上,并结合了额外的LOS指向伺服器,可以满足更严格的指向要求。 LOS指向伺服系统(在JWST中称为精细引导控制系统(FGCS))将利用精细引导传感器(FGS)作为传感器,并利用精细转向镜(FSM)作为致动器。 FSM是光学望远镜元件(OTE)的一部分,并且在三级镜和仪器焦平面之间的光路上,而FGS是集成科学仪器模块(ISIM)的一部分。 JWST保留了基本的Chandra航天器公共汽车姿态控制和确定架构,该架构使用陀螺仪,恒星跟踪器/纵横相机和反作用轮。该系统实现了优于0.5弧秒的指向稳定性。为了使用此ACS硬件达到毫秒级指向稳定性的JWST要求,将本地FGCS环路添加到了光路中。 FGCS带宽约为2.0 Hz,因此将衰减许多航天器ACS引起的低频抖动。为了减轻与反作用轮静态和动态失衡以及齿轮跳动相关的更高频率(> 2.0 Hz)的干扰,JWST将采用两级被动振动隔离系统,该系统由(1)7.0 Hz反作用轮组成每个反作用轮与航天器总线之间的隔离器,以及(2)航天器总线与光学望远镜元件(OTE)之间的1.0 Hz塔式隔离器。为了感测和测量LOS,FGS的行为非常类似于自动恒星跟踪仪,该跟踪仪具有非常小的视场并使用望远镜的光学元件。它在2.5 x 2.5弧分分钟视场(FOV)中执行捕获,识别和跟踪恒星的功能,并提供所选恒星的质心和大小以用于LOS控制。但是,由于在FGS FOV内任何时间都只跟踪一颗恒星,因此仅存在倾斜和倾斜信息。将不会检测到有关FGS LOS的旋转。 FGCS使用FSM在FGS FOV内移动引导星,并将引导星的质心放置在FGS焦平面内的任何所需位置。使用此架构,FGCS可以校正航天器ACS在俯仰和偏航中引起的低频LOS抖动,并实现JWST所需的毫秒级指向稳定性。不太严格的ISIM FOV滚动性能将仅由ACS使用航天器陀螺仪和恒星跟踪仪来提供。由于FSM处于光路中,因此任何仪器中科学物体的指向稳定性都将类似于引导星LOS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号