首页> 外文会议>American Society of Mechanical Engineers(ASME) Summer Heat Transfer Conference(HT2005) vol.3; 20050717-22; San Francisco,CA(UA) >STUDY OF THERMAL ENERGY TRANSPORT BETWEEN HYDROGEN GAS MOLECULES AND A SINGLE-WALL CARBON NANOTUBE USING MOLECULAR DYNAMICS SIMULATIONS
【24h】

STUDY OF THERMAL ENERGY TRANSPORT BETWEEN HYDROGEN GAS MOLECULES AND A SINGLE-WALL CARBON NANOTUBE USING MOLECULAR DYNAMICS SIMULATIONS

机译:分子动力学模拟研究氢气与单壁碳纳米管之间的热能传递

获取原文
获取原文并翻译 | 示例

摘要

The focus of the current research is the investigation and characterization of the energy transport between a (10,10) single-wall carbon nanotube (SWCNT) and surrounding molecular hydrogen gas using molecular dynamics (MD) simulations. The MD simulations use Tersoff-Brenner hydrocarbon potential for C-C, C-H, and H-H bonding interactions and the conventional Lennard-Jones potential for soft-sphere gas-CNT collision dynamics of H-H and H-C non-bonding van der Waals interactions. A simulation cell with periodic boundary conditions is created for 1200 carbon atoms in an armchair nanotube configuration and three distinct gas densities corresponding to 252, 500, and 1,000 H_2 molecules in the same volume. The MD simulation runs are performed with time steps of 0.1 fs and the total simulation times of 40 ps. The simulations are initialized by setting the gas species and CNT at two different temperatures. Initial gas temperatures range from 2000K to 4000K, whereas the carbon nanotube is held at 300K. After the equilibrium temperatures of the CNT and the gas molecules are achieved, the external constraints to maintain the temperature are removed and the thermal energy transport between the two is studied. The kinetic energy exchange between the nanotube and the surrounding gas is monitored to study thermal energy transport over the duration of the simulation. A parameter is proposed, the coefficient of thermal energy transfer (CTET), to characterize the thermal transport properties of the modeled systems based on parameters governing the transport process, thus mimicking the conventional heat transfer coefficient. Values for CTET vary directly with gas density and range from 50 MW/m~2K to 250MW/m~2K, showing that gas density has a significant impact with higher density corresponding to higher collision rates and higher rates of energy transfer. In contrast, the gas temperature has a lower impact on CTET, with colder gas providing in certain cases a slightly lower value for the coefficient. In order to validate the MD simulations, the time-series data of molecular vibrations of the CNT is converted to a vibrational frequency spectrum through FFT. The characteristic frequencies obtained on the spectra of isolated SWCNT and H_2 simulations are compared against the known natural frequencies of the CNT phonon modes and vibrational modes of H_2 molecules. The comparison is quite favorable.
机译:当前研究的重点是使用分子动力学(MD)模拟研究和表征(10,10)单壁碳纳米管(SWCNT)与周围的分子氢气之间的能量传输。 MD模拟使用Tersoff-Brenner烃势进行C-C,C-H和H-H键相互作用,并使用常规Lennard-Jones势进行H-H和H-C非键范德华相互作用的软球气体-CNT碰撞动力学。针对扶手椅状纳米管配置中的1200个碳原子和三个不同的气体密度(对应于相同体积中的252、500和1,000 H_2分子),创建了具有周期性边界条件的模拟单元。 MD仿真运行的时间步长为0.1 fs,总仿真时间为40 ps。通过将气体种类和CNT设置在两个不同的温度来初始化模拟。初始气体温度范围为2000K至4000K,而碳纳米管的温度保持在300K。在达到碳纳米管和气体分子的平衡温度之后,消除了维持温度的外部约束,并研究了两者之间的热能传输。监测纳米管和周围气体之间的动能交换,以研究模拟过程中的热能传输。提出了一个参数,即热能传递系数(CTET),以基于控制传递过程的参数来表征建模系统的热传递特性,从而模仿了常规的热传递系数。 CTET的值随气体密度而直接变化,范围从50 MW / m〜2K到250MW / m〜2K,表明气体密度具有显着影响,密度越高,碰撞率越高,能量传递的速率越高。相反,气体温度对CTET的影响较小,在某些情况下,较冷的气体为系数提供的值稍低。为了验证MD模拟,通过FFT将CNT分子振动的时间序列数据转换为振动频谱。将在隔离的SWCNT和H_2模拟的光谱上获得的特征频率与已知的CNT声子模式固有频率和H_2分子的振动模式进行比较。比较是相当有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号