首页> 外文会议>Heat Transfer Conference >STUDY OF THERMAL ENERGY TRANSPORT BETWEEN HYDROGEN GAS MOLECULES AND A SINGLE-WALL CARBON NANOTUBE USING MOLECULAR DYNAMICS SIMULATIONS
【24h】

STUDY OF THERMAL ENERGY TRANSPORT BETWEEN HYDROGEN GAS MOLECULES AND A SINGLE-WALL CARBON NANOTUBE USING MOLECULAR DYNAMICS SIMULATIONS

机译:利用分子动力学模拟研究氢气分子与单壁碳纳米管的热能输送

获取原文

摘要

The focus of the current research is the investigation and characterization of the energy transport between a (10,10) single-wall carbon nanotube (SWCNT) and surrounding molecular hydrogen gas using molecular dynamics (MD) simulations. The MD simulations use Tersoff-Brenner hydrocarbon potential for C-C, C-H, and H-H bonding interactions and the conventional Lennard-Jones potential for soft-sphere gas-CNT collision dynamics of H-H and H-C nonbonding van der Waals interactions. A simulation cell with periodic boundary conditions is created for 1200 carbon atoms in an armchair nanotube configuration and three distinct gas densities corresponding to 252, 500, and 1000 H{sub}2 molecules in the same volume. The MD simulation runs are performed with time steps of 0.1 fs and the total simulation times of 40 ps. The simulations are initialized by setting the gas species and CNT at two different temperatures. Initial gas temperatures range from 2000K to 4000K, whereas the carbon nanotube is held at 300K. After the equilibrium temperatures of the CNT and the gas molecules are achieved, the external constraints to maintain the temperature are removed and the thermal energy transport between the two is studied. The kinetic energy exchange between the nanotube and the surrounding gas is monitored to study thermal energy transport over the duration of the simulation. A parameter is proposed, the coefficient of thermal energy transfer (CTET), to characterize the thermal transport properties of the modeled systems based on parameters governing the transport process, thus mimicking the conventional heat transfer coefficient. Values for CTET vary directly with gas density and range from 50 MW/m{sup}2K to 250MW/m{sup}2K, showing that gas density has a significant impact with higher density corresponding to higher collision rates and higher rates of energy transfer. In contrast, the gas temperature has a lower impact on CTET, with colder gas providing in certain cases a slightly lower value for the coefficient. In order to validate the MD simulations, the time-series data of molecular vibrations of the CNT is converted to a vibrational frequency spectrum through FFT. The characteristic frequencies obtained on the spectra of isolated SWCNT and H{sub}2 simulations are compared against the known natural frequencies of the CNT phonon modes and vibrational modes of H{sub}2 molecules. The comparison is quite favorable.
机译:目前研究的重点是使用分子动力学(MD)模拟的(10,10)单壁碳纳米管(SWCNT)和周围分子氢气之间的能量传递的调查和表征。 MD仿真使用C-C,C-H和H-H键合相互作用的Tersoff-Brenner烃电位和H-H和H-C非粘合范德瓦尔斯相互作用的软球气体CNT碰撞动态的传统Lennard-Jones电位。在扶手椅纳米管结构中为1200个碳原子和相当于相同体积的三种不同的气体密度产生具有周期性边界条件的仿真单元,其三种不同的气体密度为252,500和1000小时。 MD仿真运行是在0.1 fs的时间步长进行的,并且40 ps的总模拟时间。通过在两个不同温度下设置气体物种和CNT来初始化模拟。初始气体温度范围从2000K到4000K,而碳纳米管在300K处保持。在实现CNT和气体分子的平衡温度之后,除去以维持温度的外部约束,并研究了两者之间的热能输送。监测纳米管和周围气体之间的动能交换,以在模拟的持续时间内研究热能输送。提出了一种参数,是基于控制运输过程的参数的建模系统的热传输特性的参数,从而模仿传统的传热系数。 CTET的值直接随气体密度而变化,范围为50mW / m {sup} 2k至250mW / m {sup} 2k,显示气体密度具有较高的密度对应于更高的碰撞速率和更高的能量转移率的密度显着影响。 。相反,气体温度对CTET产生较低的影响,具有较冷的气体,在某些情况下提供略低的系数值。为了验证MD仿真,CNT的分子振动的时间序列数据通过FFT转换为振动频谱。将在分离的SWCNT和H {sub} 2模拟的SPECTA上获得的特征频率与CNT声子模式的已知的自然频率进行比较,以及H {SUB} 2分子的振动模式。比较是非常有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号