首页> 外文会议>Advances in optics for biotechnology, medicine and surgery XV >OPTICAL IMAGING OF BRAIN FUNCTIONS AND NETWORKS: FROM MOUSE TO MAN
【24h】

OPTICAL IMAGING OF BRAIN FUNCTIONS AND NETWORKS: FROM MOUSE TO MAN

机译:脑功能和网络的光学成像:从鼠标到人

获取原文
获取原文并翻译 | 示例

摘要

This talk will discuss optical imaging of functional-connectivity in both humans and mouse models. For human applications, optical imaging technology is motivated by the clinical need for longitudinal monitoring of the brain at the bedside. While optical imaging has long held promise for bedside neuroimaging, image quality has been lacking, particularly in comparison to the gold standard of functional magnetic resonance imaging (fMRI). Moreover, traditional functional mapping requires subjects to perform tasks, which is very limiting in clinical populations. New high-density diffuse optical tomography (HD-DOT) methods provide one strategy for improving image quality. This talk will discuss challenges in HD-DOT including the development of large field-of-view photonics instrumentation, imaging arrays, and anatomical light modeling. The implications of the new technology for mapping of higher-order, distributed brain function such as language processing and resting-state networks will be discussed along with explorations of HD-DOT in the clinic. In animal models, a pressing interest amongst the fcMRI community is development of a mouse equivalent measurement of functional connectivity so as to link human fcMRI with mouse models of disease. To satisfy this need, we recently developed a method for functional connectivity mapping in mice using optical intrinsic signal imaging (fcOIS). Highly detailed mapping of functional networks is achieved across most of the cerebral cortex. Synthesis of these multiple network maps through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture that is in agreement with histologic literature (e.g., the Paxinos atlas). Most recently we have been working to extend these methods to genetically encoded calcium indicators (GECI's) that provide a more direct measure of neural activity, with higher speed than hemoglobin contrasts. Finally, we are extending optical imaging to volumetric imaging of the full mouse brain using diffuse optical tomography of blood dynamics, and fluorescence molecular tomography of calcium dynamics. In principle, these new deep tissue optical methods enable new paradigms linking human cognitive neuroscience to mouse models where manipulations of disease, metabolism, and development are possible.
机译:本讲座将讨论人类和小鼠模型中功能连接的光学成像。对于人类应用而言,光学成像技术的动力来自临床需要在床头纵向监测大脑。尽管光学成像长期以来一直为床旁神经成像带来希望,但一直缺乏图像质量,特别是与功能磁共振成像(fMRI)的金标准相比。此外,传统的功能映射要求受试者执行任务,这在临床人群中非常有限。新的高密度漫射光学层析成像(HD-DOT)方法提供了一种提高图像质量的策略。本演讲将讨论HD-DOT中的挑战,包括大型视场光子学仪器,成像阵列和解剖学光建模的开发。这项新技术对诸如语言处理和静止状态网络之类的高阶,分布式大脑功能的映射的意义将与临床中对HD-DOT的探索一起进行讨论。在动物模型中,fcMRI社区迫切关注的是开发小鼠等效功能连接的测量方法,以将人fcMRI与疾病小鼠模型联系起来。为了满足这一需求,我们最近开发了一种使用光学固有信号成像(fcOIS)在小鼠中进行功能连接映射的方法。跨大部分大脑皮层实现了功能网络的高度详细映射。通过迭代分割和聚类来合成这些多个网络图可提供功能神经体系结构的全面图,该图与组织学文献(例如Paxinos图集)一致。最近,我们一直在努力将这些方法扩展到遗传编码的钙指示剂(GECI's),该指示剂可比血红蛋白造影剂更快地测量神经活动。最后,我们正在使用光学动力学的扩散光学层析成像和钙动力学的荧光分子层析成像技术,将光学成像技术扩展到整个小鼠大脑的体积成像。原则上,这些新的深层组织光学方法可以实现新的范式,将人类的认知神经科学与可以操纵疾病,代谢和发育的小鼠模型联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号