首页> 外文会议>Advanced Optical Memories and Interfaces to Computer Storage >High-density photon-gated hole burning in sulfides
【24h】

High-density photon-gated hole burning in sulfides

机译:硫化物中的高密度光子门控空穴

获取原文
获取原文并翻译 | 示例

摘要

Abstract: We present the case of photoionization-induced persistent spectral holeburning in rare earth doped II-VI compounds for high density memory storage. Experimental data on photon-gated holeburning has been presented for different sulfide hosts (MgS, CaS: RE$+2$PLU$/ and RE$+3$PLU$/). With the proper choice of the host electronic band structure, the optically active rare earth ion and its electronic transitions involved in the holeburning process, we have observed the highest number of persistent holes ever burned in a single electronic transition. Efficient photon-gated holeburning in the 4f$+7$/ ($+8$/S$-7/2$/) - 4f$+6$/5d$+1$/ transition of Eu$+2$PLU$/ is a result of photoionization of Eu$+2$PLU$/ to Eu$+3$PLU$/. These holes have a width of less than 5 GHz, have no detectable erasing effects after thousands of reading cycles, survive thermal cycling up to the room temperature and have infinite lifetime at low temperature (2 K). Although self- gated holeburning is observed with reading laser at higher powers, the photon budget for reading these holes is so small that thousands of reading cycles can be performed without significantly affecting the optical signal. We discuss the unique features of these systems that make them the most promising candidates to date for the holeburning based optical memories. !10
机译:摘要:我们介绍了高密度记忆存储中稀土掺杂的II-VI化合物中光电离诱导的持久光谱空穴燃烧的情况。已经给出了有关不同硫化物宿主(MgS,CaS:RE $ + 2 $ PLU $ /和RE $ + 3 $ PLU $ /)的光子门控空穴燃烧的实验数据。通过正确选择主体电子能带结构,光学活性稀土离子及其在空穴燃烧过程中涉及的电子跃迁,我们观察到有史以来在单个电子跃迁中燃烧的持久性空穴数量最多。在4f $ + 7 $ /($ + 8 $ / S $ -7 / 2 $ /)-4f $ + 6 $ / 5d $ + 1 $ / Eu $ + 2 $ PLU $过渡中进行有效的光子门烧洞/是Eu $ + 2 $ PLU $ /光电化为Eu $ + 3 $ PLU $ /的结果。这些孔的宽度小于5 GHz,经过数千次读取循环后没有可检测到的擦除效果,可以承受高达室温的热循环,并且在低温(2 K)下具有无限的使用寿命。尽管使用较高功率的读取激光观察到了自控空穴燃烧,但是读取这些空穴的光子预算非常小,可以执行数千次读取循环而不会显着影响光信号。我们讨论了这些系统的独特功能,使它们成为迄今为止基于空穴刻录的光学存储器最有前途的候选产品。 !10

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号