【24h】

Feeling with Light for Cancer

机译:为癌症感到光明

获取原文
获取原文并翻译 | 示例

摘要

Even minute alterations in a cell's intracellular scaffolds, i.e. the cytoskeleton, which organize a cell, result in significant changes in a cell's elastic strength since the cytoskeletal mechanics nonlinearly amplify these alterations. Light has been used to observe cells since Leeuwenhoek's times and novel techniques in optical microscopy are frequently developed in biological physics. In contrast, with the optical stretcher we use the forces caused by light described by Maxwell's surface tensor to feel cells. Thus, the stretcher exemplifies the other type of biophotonic devices that do not image but manipulate cells. The optical stretcher uses optical surface forces to stretch cells between two opposing laser beams, while optical gradient forces, which are used in optical tweezers, play a minor role and only contribute to a stable trapping configuration. The combination of the optical stretcher's sensitivity and high throughput capacity make a cell's "optical stretchiness" an extremely precise parameter to distinguish different cell types. This avoids the use of expensive, often unspecific molecular cell markers. This technique applies particularly well to cells with dissimilar degrees of differentiation, as a cell's maturation correlates with an increase in cytoskeletal strength. Because malignant cells gradually dedifferentiate during the progression of cancer, the optical stretcher should allow, the direct staging from early dysplasia to metastasis of a tumor sample obtained by MRI-guided fine needle aspirations or cytobrushes. With two prototypes of a microfluidic optical stretcher at our hands, we prepare preclinical trials to study its potential in resolving breast tumors' progression towards metastasis. Since the optical stretcher represents a basic technology for cell recognition and sorting, an abundance of further biomedical applications can be envisioned.
机译:由于细胞骨架力学非线性放大了这些改变,即使是构成细胞的细胞内细胞支架,即细胞骨架中的微小变化,也会导致细胞弹性强度的显着变化。自吕伐霍克时代以来,光就一直用于观察细胞,而光学显微镜的新技术是生物物理学中经常开发的技术。相比之下,通过光学拉伸器,我们利用由麦克斯韦表面张量描述的光引起的力来感受细胞。因此,担架示例了其他类型的生物光子设备,这些设备不成像但可以操纵细胞。光学拉伸器利用光学表面力在两个相对的激光束之间拉伸细胞,而光学镊子中使用的光学梯度力则作用较小,仅有助于稳定的捕获构型。光学担架的灵敏度和高吞吐能力相结合,使电池的“光学伸展性”成为区分不同细胞类型的极其精确的参数。这避免了使用昂贵的,常常是非特异性的分子细胞标记物。该技术特别适用于分化程度不同的细胞,因为细胞的成熟与细胞骨架强度的增加有关。由于恶性细胞在癌症进展过程中逐渐分化,因此光学担架应允许从早期发育不良到通过MRI引导的细针抽吸或细胞刷获得的肿瘤样品的转移。我们手上有两个微流控光学担架的原型,我们准备进行临床前试验,以研究其解决乳腺肿瘤向转移进展的潜力。由于光学担架代表了一种用于细胞识别和分选的基本技术,因此可以设想大量的其他生物医学应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号