【24h】

Pushing the Limits of Near-field Microscopy

机译:推动近场显微镜的极限

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in apertureless near-field scanning optical microscopy (ANSOM) allow unprecedented optical and spectroscopic (fluorescence and Raman) resolution on the scale of 20-30 nm~(1,2). The key behind this technique is the probe geometry, incident light polarization and type of illumination (two - photon excitation (TPE)). The key behind the high optical spatial resolution is the creation of an electric field enhancement (f) between the specimen and the probe apex. Utilizing a 3D Finite Difference Time Domain (FDTD) technique for the modeling of tip shapes coupled with the use of a dual-beam Focused Ion Beam (FIB), it has been possible to design tips with high electric field enhancement factors in order to achieve ultra-high resolution spectroscopic images. This geometrical optimization has seen little investigation. Up to now, ion beams and chemical etching techniques have been employed to create different probe geometries. These two methods provide good reproducibility and sharp apexes, but are limited in creation of the overall end probe diameters to nominally 10-30 nm. This work investigates the possibility of utilizing a method for creating more favorable geometries for achieving a higher spatial resolution. This involves the fabrication of probes through the extraction of Gilbert-Taylor (G-T) cone geometries by high field extraction, which can achieve < 10 nm end diameters. Utilizing FDTD, the potential field enhancement factors of the G-T geometry are determined.
机译:无孔近场扫描光学显微镜(ANSOM)的最新进展提供了前所未有的光学和光谱分辨率(荧光和拉曼光谱),范围为20-30 nm〜(1,2)。该技术背后的关键是探头的几何形状,入射光的偏振和照明类型(两光子激发(TPE))。高光学空间分辨率的关键是在样品和探针顶点之间产生电场增强(f)。利用3D时域有限差分(FDTD)技术对尖端形状进行建模,并结合使用双束聚焦离子束(FIB),可以设计具有高电场增强因子的尖端,以实现超高分辨率光谱图像。这种几何优化很少有研究。迄今为止,已经采用离子束和化学蚀刻技术来创建不同的探针几何形状。这两种方法提供了良好的重现性和尖锐的顶点,但在创建总的末端探针直径时,将其限制在标称的10-30 nm。这项工作研究了利用一种方法来创建更有利的几何形状以获得更高的空间分辨率的可能性。这涉及通过通过高场提取来提取吉尔伯特-泰勒(G-T)圆锥几何形状来制造探针,该探针可以达到<10 nm的最终直径。利用FDTD,确定了G-T几何形状的潜在场增强因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号