首页> 外文会议>The 9th Asian joint conference on propulsion and power: conference guide >Numerical Investigation on Tip Clearance Flow in a Transonic Fan Rotor
【24h】

Numerical Investigation on Tip Clearance Flow in a Transonic Fan Rotor

机译:跨音速风扇转子叶尖间隙流动的数值研究

获取原文
获取原文并翻译 | 示例

摘要

Unsteadiness of tip clearance flow appears at operating points near the stability limit of the compressor with a relatively large tip clearance of the rotor blades whether in axial or centrifugal compressors/fans. Unsteady tip clearance flow is not only the source of undesirable noise but also a potential indicator for critical operating conditions with rotating stall or surge. It can also induce blade vibration, which would cause premature blade failure when the vibration is strong enough. The objective of the present study is to give more physical insight into the characteristics of unsteady tip clearance flow fields, its formation mechanism, and the relation between leakage vortex and rotating stall in a transonic axial compressor. NASA Rotor 67 is chosen and investigated in this paper. Unsteady single- and full-passage simulations of NASA Rotor 67 are performed using a commercial, three-dimensional, time-accurate, Reynolds-averaged Navier-Stokes solver. After validating the CFD data, we make a detailed analysis of the flow structure associated with tip clearance flow based on the numerical results. It is found that unsteady tip clearance flow appears when the compressor operates at the small flow rate condition near stall. The evolution of the tip leakage vortex plays a decisive role in the disturbance of the flow filed. The trajectory and position of the leakage vortex directly determine the stable state of the compressor. Further analysis indicates that disturbance is caused by the unsteady periodical oscillation of tip leakage vortex. With the mass flow rate further throttled, the trajectory of tip leakage vortex moves upstream. The results of the unsteady characteristics at the tip region are shown detailed.
机译:无论是轴向压缩机还是离心式压缩机/风扇,叶轮间隙的不稳定都会出现在接近压缩机稳定性极限的工作点,并且转子叶片的叶轮间隙相对较大。不稳定的叶尖间隙流动不仅是不良噪声的来源,还是潜在的指示器,用于指示旋转失速或喘振时的关键操作条件。它还会引起叶片振动,当振动足够强时,这会导致叶片过早失效。本研究的目的是对跨音速轴流压气机中非定常叶尖间隙流场的特性,其形成机理以及泄漏涡与旋转失速之间的关系提供更多的物理认识。本文选择并研究了NASA转子67。 NASA转子67的非稳态单通道和全通道仿真是使用商业的,三维,时间精确,雷诺平均的Navier-Stokes求解器进行的。验证了CFD数据后,我们根据数值结果对与叶尖间隙流相关的流结构进行了详细分析。可以发现,当压缩机在失速附近以小流量运行时,会出现不稳定的叶尖间隙流动。尖端泄漏涡的演变在扰动流场中起决定性作用。泄漏涡的轨迹和位置直接决定了压缩机的稳定状态。进一步的分析表明,扰动是由尖端泄漏涡的非周期性周期性振荡引起的。随着质量流量的进一步节流,尖端泄漏涡流的轨迹向上游移动。详细显示了尖端区域的不稳定特性的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号