首页> 外文会议>6th international conference on fuel cell science, engineering, and technology 2008 : Material and fabrication processes ; Cell, stack and system modeling ; Fuel processing and storage ... >PART Ⅰ OF Ⅱ: DEVELOPMENT OF MERESS MODEL - DEVELOPING SYSTEM MODELS OF STATIONARY COMBINED HEAT AND POWER (CHP) FUEL CELL SYSTEMS (FCSs) FOR REDUCED COSTS AND GREENHOUSE GAS (GHG) EMISSIONS
【24h】

PART Ⅰ OF Ⅱ: DEVELOPMENT OF MERESS MODEL - DEVELOPING SYSTEM MODELS OF STATIONARY COMBINED HEAT AND POWER (CHP) FUEL CELL SYSTEMS (FCSs) FOR REDUCED COSTS AND GREENHOUSE GAS (GHG) EMISSIONS

机译:Ⅱ部分的第一部分:降低成本和温室气体排放的固定式热电联产(CHS)燃料电池系统(FCS)的Meres模型开发系统模型

获取原文
获取原文并翻译 | 示例

摘要

Stationary combined heat and power (CHP) fuel cell systems (FCSs) can provide electricity and heat for buildings, and can reduce greenhouse gas (GHG) emissions significantly if they are configured with an appropriate installation and operating strategy. The Maximizing Emission Reductions and Economic Savings Simulator (MERESS) is an optimization tool that was developed to allow users to evaluate avant-garde strategies for installing and operating CHP FCSs in buildings. These strategies include networking, load following, and the use of variable heat-to-power ratios, all of which commercial industry has typically overlooked. A primary goal of the MERESS model is to use relatively inexpensive simulation studies to identify more financially and environmentally effective ways to design and install FCSs. It incorporates the pivotal choices that FCS manufacturers, building owners, emission regulators, competing generators, and policy makers make, and empowers them to evaluate the effect of their choices directly. MERESS directly evaluates trade-offs among three key goals: GHG reductions, energy cost savings for building owners, and high sales revenue for FCS manufacturers. MERESS allows users to evaluate these design trade-offs and to identify the optimal control strategies and building load curves for installation based on either 1) maximum GHG emission reductions or 2) maximum cost savings to building owners. Part Ⅰ of Ⅱ articles discusses the motivation and key assumptions behind MERESS model development. Part Ⅱ of Ⅱ articles discusses run results from MERESS for a California town and makes recommendations for further FCS installments (Colella 2008 (a)).
机译:固定式热电联产(CHS)燃料电池系统(FCS)可以为建筑物提供电力和热量,并且如果配置了适当的安装和操作策略,则可以显着减少温室气体(GHG)的排放。最大限度地减少排放和节省经济的模拟器(MERESS)是一种优化工具,旨在让用户评估在建筑物中安装和操作CHP FCS的前卫策略。这些策略包括联网,负载跟踪以及使用可变的热-功率比,而所有这些通常都是商业行业所忽略的。 MERESS模型的主要目标是使用相对便宜的仿真研究来确定设计和安装FCS的更经济和环保的方法。它包含了FCS制造商,建筑物所有者,排放监管者,竞争的发电者和政策制定者做出的关键选择,并使他们能够直接评估选择的效果。 MERESS直接评估了以下三个主要目标之间的权衡:减少温室气体,为业主节约能源成本以及为FCS制造商带来高销售收入。 MERESS允许用户评估这些设计折衷,并基于1)最大的温室气体排放量减少或2)建筑物所有者的最大成本节省,确定最佳的安装安装控制策略和曲线。文章的第一部分讨论了MERESS模型开发的动机和关键假设。 Ⅱ部分的第二部分讨论了MERESS在加州城镇的运行结果,并为进一步的FCS分期付款提出了建议(Colella 2008(a))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号