【24h】

HIGH ACCURACY DRAG-FREE CONTROL FOR THE MICROSCOPE AND LISA MISSIONS

机译:显微镜和LISA任务的高精度无拖曳控制

获取原文
获取原文并翻译 | 示例

摘要

The recent development of high-accuracy drag-free techniques has been made possible by the emergence of new ultra-sensitive sensors and accurate actuators, and thus several space missions for Science requiring very low level of non-gravitational accelerations are now envisaged by space agencies. The extremely high level of accuracy required by this type of scientific missions require a specific design process for the Drag-Free and Attitude Control System (DFACS). Astrium SAS has been in charge of the DFACS definition and design for numerous drag-free projects, with the STEP and GOCE Phase A studies in the late nineties, and more recently with the Phase A study of the ESA LISA cornerstone mission, and with the phase A of the μScope (Microscope) mission, initiated by CNES and ONERA. This paper will present the common DFACS design methodology used for these two missions, the resulting design and the performances demonstrated through simulations. μScope is a fundamental physics mission derived from the original STEP mission concept (testing the Equivalence Principle with an accuracy of 10~(15)) proposed to be flown by CNES as part of the "Myriade" microsatellite programme. The μScope DFACS is based on the technology of capacitive inertial sensors, designed for this mission as cylindrical differential accelerometers, and on accurate proportional thrusters, the FEEP (Field Emission Electric Propulsion) thrusters. The main DFACS performance is specified as a spectrum level- 3.10~(-10) m/s~2/Hz~(1/2) -in a very narrow frequency band around the frequency of possible violation of the Equivalence Principle (F_(EP), equal to 7.9 10~(-4) Hz). The feasibility of the DFACS design proposed by Astrium SAS was consolidated thanks to detailed time simulations, allowing the verification of the performances of the design in representative conditions, including all types of disturbing noises and inter-axes coupling. The NASA-ESA joint mission LISA - dedicated to the detection in space of gravitational waves through laser interferometry between three satellites separated by 5 10~6 km - sets quite challenging requirements on the translation & attitude control of each spacecraft. Indeed, the scientific objective, interferometer arm length measurement with an accuracy of 20 pm/Hz~(1/2) over the MBW (Measurement Bandwidth, from 0.1 mHz to 0.1 Hz) translates into spacecraft pointing and stability needs (30 nrad & 8 nrad/Hz~(1/2)) orders of magnitude better than current high pointing accuracy systems. The LISA mission shares with μScope the same actuators, FEEP thrusters, and the same type of inertial sensor technology, although utilised here as proofmasses rather than accelerometers. The drag-free control needs are quite unique, since the spacecraft shall track the two isolated test masses supporting the interferometer reference mirrors with an accuracy of 2.5 nm/Hz~(1/2) in the MBW. The DFACS involves 19 degrees of freedom (6 for the S/C and 6 for each test mass plus the angle between the two telescopes), resulting in a quite complex control architecture with intricate loops. A SISO (Single-Input/Single-Output) design approach was however shown to be adequate, and validated through a detailed simulation of the 2D problem that allows capturing coupling effects while reducing the number of DOFs to 10.
机译:新型超灵敏传感器和精确致动器的出现使得高精度无阻力技术的最新发展成为可能,因此,太空机构现在设想了一些要求非常低的非重力加速度的科学太空任务。此类科学任务要求的极高的准确性要求针对无阻力和姿态控制系统(DFACS)进行特定的设计过程。 Astrium SAS负责90年代后期的STEP和GOCE A期研究,以及最近的ESA LISA基石任务A期研究,以及许多无阻力项目的DFACS定义和设计。由CNES和ONERA发起的μScope(显微镜)任务的A阶段。本文将介绍用于这两个任务的通用DFACS设计方法,最终设计以及通过仿真演示的性能。 μScope是一项基本的物理任务,它源自最初的STEP任务概念(以10〜(15)的精度测试等效原理),并由CNES作为“ Myriade”微卫星计划的一部分进行了飞行。 μScopeDFACS基于电容式惯性传感器技术,为此目的设计为圆柱差分加速度计,并基于精确比例推进器FEEP(场发射电动推进器)。 DFACS的主要性能指定为频谱水平-3.10〜(-10)m / s〜2 / Hz〜(1/2)-在可能违反等效原理(F_( EP),等于7.9 10〜(-4)Hz)。通过详细的时间仿真,Astrium SAS提出的DFACS设计的可行性得到了巩固,从而可以在代表性条件下验证设计性能,包括所有类型的干扰噪声和轴间耦合。 NASA-ESA联合任务LISA致力于通过激光干涉测量法探测三颗相距5 10〜6 km的卫星之间的引力波,对每个航天器的平移和姿态控制提出了极具挑战性的要求。确实,科学的目标是在MBW上以20 pm / Hz〜(1/2)的精度测量干涉仪臂长(测量带宽,从0.1 mHz到0.1 Hz),这转化为航天器指向和稳定性需求(30 nrad和8)。 nrad / Hz〜(1/2))数量级比当前的高指向精度系统好。 LISA任务与μScope共享相同的执行器,FEEP推进器和相同类型的惯性传感器技术,尽管此处被用作质量而不是加速度计。无拖曳的控制需求是非常独特的,因为航天器将以MBW的精度跟踪2.5纳米/赫兹〜(1/2)的距离来跟踪支撑干涉仪参考镜的两个隔离测试质量。 DFACS涉及19个自由度(S / C为6,每个测试质量为6,两个望远镜之间的夹角为6),从而导致具有复杂回路的非常复杂的控制体系结构。然而,SISO(单输入/单输出)设计方法被证明是足够的,并且通过对2D问题的详细模拟进行了验证,该问题可以捕获耦合效应,同时将DOF的数量减少到10个。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号