首页> 外文会议>55th ISA POWID symposium 2012. >Coordinated Feedwater Heater Energy Control to Achieve Higher Peak Load Generation Reduced NO_X Emissions
【24h】

Coordinated Feedwater Heater Energy Control to Achieve Higher Peak Load Generation Reduced NO_X Emissions

机译:协调给水加热器能量控制,以实现更高的峰值负荷产生并减少NO_X排放

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The recent shift in operating profile for many coal fired plants to overnight minimum load or frequent shutdowns causes furnace slag to shed temporarily lowering steam temperatures on subsequent operation. With the load variability of intermittent renewable energy sources, a premium value is placed on higher peak generation capability from conventional coal fired plants. The high pressure feedwater heater energy control is a means to achieve design steam temperatures, improve unit heat rate and increase peak load generation capability. High pressure feedwater heater energy control can be a vital component of a multivariable steam temperature, load generation and NO_x emissions control system. Conventional fossil fired steam power plants apply the Rankine cycle to maximize power plant efficiency while meeting power generation requirements. At design time the cycle is analyzed combining information from the turbine, boiler, and subsystems to design the specific Rankine cycle configuration of feedwater heaters. The turbine extraction points determine the final feedwater heater temperature as a function of turbine steam flow. The boiler heats the feedwater to generate superheated steam targeting the design pressure and temperature. Drum style steam power plants have fixed surface areas for each function of the steam process; economizer for water preheating, evaporator for steam generation, superheater for superheating steam and reheater for reheating steam. Surface areas designs achieve cycle steam temperatures for specified steam flows and fuels. Modifications to a boiler section surface area or changes in fuel quality can result in an energy distribution imbalance that challenge the attainment of design steam temperatures and load generation. Application of in-furnace controls to redistribute energy may have adverse consequences on NO_x emissions and boiler efficiency. A high pressure feedwater heater energy control provides an additional element of control to attain design steam temperatures, redistribute boiler energy, increase load generation and respond to electrical grid dispatch. Achieving design steam temperatures improves cycle efficiency. The system provides the additional benefit of increased peak MW generation up to 7% depending on cycle design and equipment limitations for both drum type and once-thru type boilers by increasing the steam flow through the intermediate and low pressure steam turbines. generation capability can be significantly increased through high pressure feedwater heater energy control with little, if any, consequence on the unit heat rate. The estimated potential increase in load generation is up to 7% depending on cycle design and equipment limitations. For units that do not have a steam temperature deficiency, including once through units, the efficiency impact of cooler feedwater is mitigated by the increased boiler efficiency and reheat steam flow through the LP turbine. High pressure feedwater heater energy control is a viable and effective additional element of regulation for superheat and reheats steam temperatures and peak load generation. For units operating with low superheat steam temperature, the potential improvement in cycle efficiency through achieving design steam temperatures increases Rankine cycle efficiency. High pressure feedwater heater energy control can be a vital component of a multivariable boiler, load generation, emissions, and steam temperature control system. With the additional advantage of increased sustainable MW generation and reduced furnace NO_x emissions, the potential benefits are substantial. The increased utilization of intermittent renewable energy sources and the shift in energy supply favoring gas turbines places new burdens on the electrical grid dispatch of coal fired units. Coal fired units must now operate to very low minimum loads with the capability to ramp load quickly and sustain high peak loads. The application of high pressure feedwater heater energy control provides significant potential benefits and should be integrated with a multivariable boiler/turbine control for regenerative Rankine cycles with reheat.
机译:最近,许多燃煤电厂的运行状况已转变为夜间最低负荷或频繁停机,这导致炉渣脱落,暂时降低了后续运行时的蒸汽温度。由于间歇性可再生能源的负荷可变性,传统燃煤电厂的更高峰值发电能力具有很高的价值。高压给水加热器的能量控制是一种达到设计蒸汽温度,提高单位热效率并提高峰值负荷产生能力的手段。高压给水加热器的能量控制可能是多变量蒸汽温度,负荷产生和NO_x排放控制系统的重要组成部分。传统的化石燃料蒸汽发电厂采用兰金循环,以在满足发电要求的同时最大化发电厂的效率。在设计时,结合来自涡轮机,锅炉和子系统的信息来分析循环,以设计给水加热器的特定兰金循环配置。涡轮抽汽点决定了最终给水加热器的温度与涡轮蒸汽流量的关系。锅炉加热给水以产生针对设计压力和温度的过热蒸汽。鼓式蒸汽发电厂具有固定的表面积,可满足各种蒸汽处理功能;用于水预热的节能器,用于蒸汽产生的蒸发器,用于过热蒸汽的过热器和用于再热蒸汽的再热器。表面积设计可实现指定蒸汽流量和燃料的循环蒸汽温度。锅炉截面表面积的更改或燃料质量的变化会导致能量分配不平衡,这对达到设计蒸汽温度和负荷产生提出了挑战。使用炉内控制装置重新分配能源可能会对NO_x排放和锅炉效率产生不利影响。高压给水加热器能量控制提供了额外的控制元素,可达到设计蒸汽温度,重新分配锅炉能量,增加负荷产生并响应电网调度。达到设计蒸汽温度可提高循环效率。该系统的另一个好处是,通过增加流经中压和低压蒸汽轮机的蒸汽流量,根据循环设计和鼓式锅炉和一次通过式锅炉的设备限制,将峰值MW发电增加至7%。通过高压给水加热器的能量控制,发电能力可以大大提高,而对单位热量的影响很小(如果有的话)。根据周期设计和设备限制,估计负载产生的潜在增长最多可达7%。对于不存在蒸汽温度不足的机组,包括一次通过机组,通过提高锅炉效率和重新加热流经LP涡轮机的蒸汽,可以减轻较冷给水的效率影响。高压给水加热器能量控制是过热,再热蒸汽温度和峰值负荷产生的可行且有效的附加调节要素。对于以低过热蒸汽温度运行的机组,通过达到设计蒸汽温度可以潜在地提高循环效率,从而提高兰金循环效率。高压给水加热器的能量控制可能是多变量锅炉,负荷产生,排放和蒸汽温度控制系统的重要组成部分。凭借增加的可持续兆瓦发电量和减少的窑炉NO_x排放量的额外优势,潜在的利益是巨大的。间歇性可再生能源利用率的提高以及有利于燃气轮机的能源供应的转变给燃煤机组的电网调度带来了新的负担。燃煤机组现在必须在极低的最小负荷下运行,并且能够迅速增加负荷并承受高峰值负荷。高压给水加热器能量控制的应用具有显着的潜在优势,应与多变量锅炉/涡轮机控制集成,以实现带再热的兰金循环再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号