首页> 外文会议>4th International Conference on Nanochannels, Microchannels and Minichannels 2006(ICNMM2006) pt.A >MODELING LOW KNUDSEN NUMBER TRANSITION FLOWS USING A COMPUTATIONALLY EFFICIENT CONTINUUM-BASED METHODOLOGY
【24h】

MODELING LOW KNUDSEN NUMBER TRANSITION FLOWS USING A COMPUTATIONALLY EFFICIENT CONTINUUM-BASED METHODOLOGY

机译:使用基于高效连续的方法对低KNUDSEN数转换流进行建模

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new technique that combines Grad's 13-moment equations (G13) with a phenomenological approach. The combination of these approaches and the proposed solution technique manages to capture important non-equilibrium phenomena that start to appear in the early transition-flow regime. In contrast to the fully-coupled 13-moment equations, a significant advantage of the present solution technique is that it does not require extra boundary conditions. The solution method is similar in form to the Maxwellian iteration used in the kinetic theory of gases. In our approach, Grad's equations for viscous stress and heat flux are used as constitutive relations for the conservation equations instead of being solved as equations of transport. This novel technique manages to capture non-equilibrium effects and its relative computational cost is low in comparison to other methods such as fully-coupled solutions involving many moments or discrete methods. In this study, the proposed numerical procedure is applied to a planar Couette flow and the results are compared to predictions obtained from the direct simulation Monte Carlo method. In the transition regime, this test case highlights the presence of normal viscous stresses and tangential heat fluxes that arise from non-equilibrium phenomena. These effects cannot be captured by the Navier-Stokes-Fourier constitutive equations or phenomenological modifications thereof. Moreover, simply using the G13 equations, along with the decoupled solution method, does not capture the nonlinearities occurring in the proximity of a solid wall. However, combining phenomenological scaling functions and slip boundary conditions with the G13 equations provides a better representation of these important non-equilibrium phenomena but at a relatively low computational cost.
机译:本文提出了一种新技术,该技术结合了Grad的13矩方程(G13)和现象学方法。这些方法和所提出的解决方案技术的组合设法捕获了重要的非平衡现象,这种现象开始出现在早期的过渡流状态中。与完全耦合的13矩方程相比,本解决方案技术的显着优势在于它不需要额外的边界条件。求解方法的形式类似于气体动力学理论中使用的麦克斯韦迭代法。在我们的方法中,粘性应力和热通量的Grad方程被用作守恒方程的本构关系,而不是被求解为输运方程。与其他方法(例如涉及许多时刻的全耦合解决方案或离散方法)相比,该新颖技术设法捕获非平衡效应,并且其相对计算成本较低。在这项研究中,将所提出的数值程序应用于平面Couette流,并将结果与​​直接模拟蒙特卡洛方法获得的预测结果进行比较。在过渡状态下,该测试案例突出显示了由于非平衡现象而引起的正常粘性应力和切向热通量的存在。这些影响无法通过Navier-Stokes-Fourier本构方程或其现象学修改来捕获。此外,仅使用G13方程以及解耦解法就无法捕获在实体墙附近发生的非线性。但是,将现象学比例函数和滑动边界条件与G13方程相结合,可以较好地表示这些重要的非平衡现象,但计算成本较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号