【24h】

ON INTEGRATED CATASTROPHIC RISK MANAGEMENT

机译:综合巨灾风险管理

获取原文
获取原文并翻译 | 示例

摘要

The model outlined in Section 4 can be used for risk management with the so-called rolling horizon. The model includes a time horizon τ , which may be a random variable, say the time of the first catastrophe from the given initial state at t = 0. This generates a sequence of decisions for t = 0,1,... . After implementing decisions at t = 0, new information becomes available. At t = 1 the model is updated, a new sequence of decisions for t = 1,2,... with a new time horizon is obtained, decisions for t = 1 are implemented, and so on. Thus, in risk management with a rolling time horizon expectations within a time horizon τ are used to find and implement decisions at each current step t = 0,1,... . Several data-intensive numerical experiments with the type of models outlined in this paper are discussed in [1], [5-6]. In these experiments data on earthquakes from Russia and Italy are used. The generator of earthquakes is designed in a way suitable for on-line adaptive Monte Carlo optimization. It uses regional maps of seismic activities, macroseismic intensities, and the geo-tectonic structure. On the basis of these maps the over-time occurrence of earthquakes is generated at different locations. The time horizon in these experiments coincides with time τ of the first catastrophe. Given the distributions of the return time for each seismic zone i, the time of the next earthquake θ_ i, in each i can be sampled. Then τ is calculated as τ = min_i θ_i. All values at risk in the region are subdivided into several categories according to their vulnerability. Given a macroseismic intensity and a probability distribution of damage for a given category of buildings, losses L_j~t are simulated for each location j. The model has been implemented in Matlab on a Pentium 450MHz. The solution time of a problem with 300 decision variables, 200 locations, and up to 2000 fast Monte Carlo catastrophe simulations was about 20-40 minutes. In some cases the model can be reduced to a linear programming model, but it will require at least 2000x300 additional variables. The purpose of the experiments in the region Irkutsk, Russia, was to analyze the feasibility of catastrophe coverage for insurance companies under different attitudes to risks and different initial risk reserves. In the region the emergency of a viable insurance industry is slow and subject to insolvency risks. In our ex- periments we used different numbers of imaginative companies. We observed considerable improvements with respect to overpayments of individuals and their profits through the ability of the model to deal with the contribution of individual risks to these indicators. In particular, the important characteristic of the optimal solutions is the sharing of the same risks by different companies. The model tends to select "almost" mutually independent or/and compensating each other (i.e., negatively correlated) fractions of different risks. A flood management model for a European region is created at IIASA. This model will incorporate in the same integrated manner the geo-physical characteristics of the region, hydraulic and hydrological equations of floods, the vulnerability of buildings and the agricultural yields, socio-economic data and various feasible policy options.
机译:第4节中概述的模型可以用于所谓的滚动期风险管理。该模型包括一个时间范围τ,它可以是一个随机变量,例如在给定的初始状态t = 0处第一次灾难的时间。这会生成一系列t = 0,1,...的决策。在t = 0处执行决策后,可获得新信息。在t = 1时,将更新模型,获得具有新时间范围的t = 1,2,...的新决策序列,执行t = 1的决策,依此类推。因此,在具有滚动时间范围的风险管理中,时间范围τ内的期望值用于在每个当前步骤t = 0,1,...处找到并执行决策。在[1],[5-6]中讨论了几种具有本文概述的模型类型的数据密集型数值实验。在这些实验中,使用了来自俄罗斯和意大利的地震数据。地震发生器的设计方式适合于在线自适应蒙特卡洛优化。它使用地震活动,大地震烈度和地质构造的区域地图。根据这些图,在不同位置生成地震的超时发生。这些实验中的时间范围与第一次灾难的时间τ一致。给定每个地震带i的返回时间分布,可以对每个i中下一次地震的时间θ_i进行采样。然后,将τ计算为τ= min_iθ_i。根据其脆弱性,该区域中所有处于风险中的价值均分为几类。在给定建筑物类别的给定宏观地震烈度和破坏概率分布的情况下,针对每个位置j模拟损失L_j〜t。该模型已在奔腾450MHz的Matlab中实现。具有300个决策变量,200个位置以及多达2000个快速蒙特卡洛灾难模拟的问题的求解时间约为20-40分钟。在某些情况下,该模型可以简化为线性规划模型,但至少需要2000x300的其他变量。在俄罗斯伊尔库茨克地区进行实验的目的是分析在风险态度和初始风险准备金不同的情况下,保险公司进行巨灾保险的可行性。在该地区,可行的保险业的紧急情况缓慢,并且面临破产风险。在我们的实验中,我们使用了不同数量的富有想象力的公司。我们通过模型处理个人风险对这些指标的贡献的能力,观察到个人超额支付及其利润方面的显着改善。特别是,最佳解决方案的重要特征是不同公司共同承担相同的风险。该模型趋向于选择“几乎”相互独立或/和补偿不同风险的彼此(即,负相关)的分数。 IIASA创建了欧洲地区的洪水管理模型。该模型将以相同的综合方式纳入该地区的地球物理特征,洪水的水文和水文方程式,建筑物的脆弱性和农业产量,社会经济数据以及各种可行的政策选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号