首页> 外文会议>3rd AIAA spacecraft structures conference 2016 >Structural Design Considerations for a 50 kW-Class Solar Array for NASA's Asteroid Redirect Mission
【24h】

Structural Design Considerations for a 50 kW-Class Solar Array for NASA's Asteroid Redirect Mission

机译:用于NASA小行星重定向任务的50 kW级太阳能电池阵列的结构设计注意事项

获取原文
获取原文并翻译 | 示例

摘要

NASA is planning an Asteroid Redirect Mission (ARM) to take place in the 2020s. To enable this multi-year mission, a 40 kW class solar electric propulsion (SEP) system powered by an advanced 50 kW class solar array will be required. Powered by the SEP module (SEPM), the ARM vehicle will travel to a large near-Earth asteroid, descend to its surface, capture a multi-metric ton (t) asteroid boulder, ascend from the surface and return to the Earth-moon system to ultimately place the ARM vehicle and its captured asteroid boulder into a stable distant orbit. During the years that follow, astronauts flying in the Orion multipurpose crew vehicle (MPCV) will dock with the ARM vehicle and conduct extravehicular activity (EVA) operations to explore and sample the asteroid boulder. This paper will review the top structural design considerations to successfully implement this 50 kW class solar array that must meet unprecedented performance levels. These considerations include beyond state-of-the-art metrics for specific mass, specific volume, deployed area, deployed solar array wing (SAW) keep in zone (KIZ), deployed strength and deployed frequency. Analytical and design results are presented that support definition of stowed KIZ and launch restraint interface definition. An offset boom is defined to meet the deployed SAW KIZ. The resulting parametric impact of the offset boom length on spacecraft moment of inertias and deployed SAW quasistatic and dynamic load cases are also presented. Load cases include ARM spacecraft thruster plume impingement, asteroid surface operations and Orion docking operations which drive the required SAW deployed strength and damping. The authors conclude that to support NASA's ARM power needs, an advanced SAW is required with mass performance better than 125 W/kg, stowed volume better than 40 kW/m~3, a deployed area of 200 m~2 (100 m~2 for each of two SAWs), a deployed SAW offset distance of nominally 3-4 m, a deployed SAW quasistatic strength of nominally 0.1 g in any direction, a deployed loading displacement under 2 m, a deployed fundamental frequency above 0.1 Hz and deployed damping of at least 1%. These parameters must be met on top of challenging mission environments and ground testing requirements unique to the ARM project.
机译:NASA计划在2020年代进行小行星重定向任务(ARM)。为了实现这一多年任务,将需要一个由先进的50 kW级太阳能电池阵列提供动力的40 kW级太阳能电力推进(SEP)系统。由SEP模块(SEPM)提供动力的ARM车辆将行驶到一个大型近地小行星,下降到其表面,捕获一个多吨的(t)小行星巨石,从表面升起并返回地球月球最终将ARM运载工具及其捕获的小行星巨石放置到稳定的遥远轨道上的系统。在随后的几年中,乘坐Orion多用途乘员飞行器(MPCV)飞行的宇航员将与ARM车辆对接,并进行舱外活动(EVA)操作,以探索和采样小行星巨石。本文将回顾成功实现必须满足前所未有的性能水平的50 kW级太阳能电池阵列的主要结构设计注意事项。这些考虑因素包括针对特定质量,特定体积,部署区域,部署的太阳能电池阵列机翼(SAW)保持在区域(KIZ),部署的强度和部署的频率的最新技术指标。提出了分析和设计结果,这些结果支持收起KIZ的定义和发射约束界面的定义。定义了一个动臂来满足已部署的SAW KIZ。还介绍了偏置动臂长度对航天器惯性矩以及已部署的SAW准静态和动态载荷情况的参数影响。负载情况包括ARM航天器推进器羽流撞击,小行星表面操作和Orion对接操作,这些操作驱动所需的SAW展开强度和阻尼。作者得出结论,为了支持NASA的ARM功率需求,需要一种质量优于125 W / kg的先进SAW,收装体积大于40 kW / m〜3,部署面积为200 m〜2(100 m〜2对于两个SAW中的每一个),展开的SAW偏移距离标称值为3-4 m,展开的SAW准静态强度在任何方向上的标称值为0.1 g,展开的负载位移小于2 m,展开的基频大于0.1 Hz,展开的阻尼至少1%。必须在具有挑战性的任务环境和ARM项目独有的地面测试要求之上满足这些参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号