首页> 外文会议>AIAA spacecraft structures conference >Structural Design Considerations for a 50 kW-Class Solar Array for NASA's Asteroid Redirect Mission
【24h】

Structural Design Considerations for a 50 kW-Class Solar Array for NASA's Asteroid Redirect Mission

机译:用于NASA的小行星重定向使命的50千瓦级太阳能阵列的结构设计考虑因素

获取原文

摘要

NASA is planning an Asteroid Redirect Mission (ARM) to take place in the 2020s. To enable this multi-year mission, a 40 kW class solar electric propulsion (SEP) system powered by an advanced 50 kW class solar array will be required. Powered by the SEP module (SEPM), the ARM vehicle will travel to a large near-Earth asteroid, descend to its surface, capture a multi-metric ton (t) asteroid boulder, ascend from the surface and return to the Earth-moon system to ultimately place the ARM vehicle and its captured asteroid boulder into a stable distant orbit. During the years that follow, astronauts flying in the Orion multipurpose crew vehicle (MPCV) will dock with the ARM vehicle and conduct extravehicular activity (EVA) operations to explore and sample the asteroid boulder. This paper will review the top structural design considerations to successfully implement this 50 kW class solar array that must meet unprecedented performance levels. These considerations include beyond state-of-the-art metrics for specific mass, specific volume, deployed area, deployed solar array wing (SAW) keep in zone (KIZ), deployed strength and deployed frequency. Analytical and design results are presented that support definition of stowed KIZ and launch restraint interface definition. An offset boom is defined to meet the deployed SAW KIZ. The resulting parametric impact of the offset boom length on spacecraft moment of inertias and deployed SAW quasistatic and dynamic load cases are also presented. Load cases include ARM spacecraft thruster plume impingement, asteroid surface operations and Orion docking operations which drive the required SAW deployed strength and damping. The authors conclude that to support NASA's ARM power needs, an advanced SAW is required with mass performance better than 125 W/kg, stowed volume better than 40 kW/m~3, a deployed area of 200 m~2 (100 m~2 for each of two SAWs), a deployed SAW offset distance of nominally 3-4 m, a deployed SAW quasistatic strength of nominally 0.1 g in any direction, a deployed loading displacement under 2 m, a deployed fundamental frequency above 0.1 Hz and deployed damping of at least 1%. These parameters must be met on top of challenging mission environments and ground testing requirements unique to the ARM project.
机译:美国国家航空航天局计划在2020年代举办小行星重定向任务(ARM)。为了实现这一多年的任务,将需要40千瓦的太阳能电动推进(SEP)系统,由先进的50千瓦级太阳能阵列进行动力。由SEP模块(SEPM)提供动力,臂车辆将前往大型近地区的小行星,下降到其表面,捕获多度量吨(T)小行星巨石,从表面上升并返回地球系统最终将臂车辆及其捕获的小行星巨石放入稳定的远处轨道上。在遵循的几年中,宇航员在Orion Multippose船员(MPCV)中飞行将与臂车辆停靠,并进行探索和样本的型号的活动(EVA)操作才能探索和抽样。本文将审查顶级结构设计考虑因素,以成功实施此50千瓦级太阳能阵列,必须满足前所未有的性能水平。这些考虑因素包括特定质量,特定卷,部署区域,部署的太阳能阵机翼(SAW)保持在区域(KIZ),部署强度和部署频率的最先进的指标。提出了分析和设计结果,支持CARTED KIZ的定义和启动约束接口定义。定义了偏移臂架以满足已部署的SAW KIZ。还介绍了所得到的参数对惯性惯性的航天器矩和部署锯Quasistatic和动态负载箱的影响。装载案例包括ARM航天器推进器羽毛冲击,小行星表面操作和ORION对接操作,其驱动所需的SAW部署的强度和阻尼。作者得出结论,为了支持NASA的ARM电力需求,需要一个先进的锯,以比125 W / kg更好的质量表现,收起的体积优于40 kW / m〜3,一个200m〜2的部署面积(100 m〜2对于每个锯中的每一个),名义上是3-4米的展示锯偏移距离,在任何方向上展示了标称0.1g的型锯Quasistatic强度,在2米以下的部署的加载位移,占部署的基频以上0.1 Hz和部署阻尼至少1%。必须满足这些参数在挑战性的使命环境和ARM项目独特的地面测试要求之上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号