【24h】

TEMPERATURE MEASUREMENT IN MICROFLUIDIC SYSTEMS USING PHOTOBLEACHING OF A FLUORESCENT SLAB

机译:荧光板光解法测量微流体系统中的温度

获取原文
获取原文并翻译 | 示例

摘要

Temperature control is key to microfluidic-based Lab-on-a-Chip devices for a variety of applications such as polymerase chain reaction for DNA amplification and isoelectric focusing for protein separation where pH gradients are thermally generated. The most widely used temperature measurement method involves the mixing of the buffer solution with a fluorescent dye, which has a temperature-dependent fluorescent intensity. The temperature distribution in the liquid can be obtained by monitoring the fluorescent intensity distribution in the channel. However, this method can not be easily applied to polymer-made microfluidic chips because of dye absorption and penetration into polymer chips, electrophoresis of dye which causes artificial temperature gradients, and inevitable photobleaching of fluorescent dye. Therefore, a novel method is developed and presented here for temperature measurement by utilizing photobleaching of fluorescent dye. This method includes two novel contributions: i) a specially developed model for converting temperature-dependent photobleaching speed distribution to temperature distribution, and ii) an introduction of a thin polydimethylsiloxane (PDMS) layer with saturated Rhodamine B for solving the above-mentioned dye diffusion and electrophoresis problems. In this new method, a thin PDMS layer saturated with Rhodamine B is bonded with another PDMS layer with microchannels instead of mixing the dye with the buffer solution. Therefore, the problems associated with dye diffusion into PDMS chips and electrophoresis when an electrical field is applied to channels are avoided. The developed theory is validated by comparing the experimentally measured temperature distribution with numerical predicted results. The theory and its validation will be presented and discussed.
机译:温度控制是基于微流体的芯片实验室设备在多种应用中的关键,例如用于DNA扩增的聚合酶链反应和用于蛋白质分离的等电聚焦(其中热梯度产生的pH)。最广泛使用的温度测量方法涉及将缓冲溶液与荧光染料混合,该荧光染料具有随温度变化的荧光强度。液体中的温度分布可以通过监视通道中的荧光强度分布来获得。然而,由于染料吸收和渗透到聚合物芯片中,染料的电泳导致人为的温度梯度以及不可避免的荧光染料的光致漂白,因此该方法不能容易地应用于聚合物制的微流体芯片。因此,在这里开发并提出了一种利用荧光染料的光漂白进行温度测量的新方法。该方法包括两个新颖的贡献:i)专门开发的模型,用于将取决于温度的光漂白速度分布转换为温度分布; ii)引入具有饱和罗丹明B的聚二甲基硅氧烷薄(PDMS)层,以解决上述染料扩散和电泳问题。在这种新方法中,用罗丹明B饱和的PDMS薄层与另一个具有微通道的PDMS层结合在一起,而不是将染料与缓冲溶液混合。因此,避免了在向通道施加电场时与染料扩散到PDMS芯片和电泳有关的问题。通过将实验测得的温度分布与数值预测结果进行比较,可以验证所开发的理论。将介绍和讨论该理论及其验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号