首页> 外文会议>26th Southern biomedical engineering conference >Quasi-static Analysis of Electric Field Distributions by Disc Electrodes in a Rabbit Eye Model
【24h】

Quasi-static Analysis of Electric Field Distributions by Disc Electrodes in a Rabbit Eye Model

机译:兔眼模型中圆盘电极对电场分布的准静态分析

获取原文
获取原文并翻译 | 示例

摘要

We developed a compartmentalized finite element model (FEM) of the electric fields generated in the rabbit retina due to a biphasic stimulus pulse. The model accounts for the different resistivities and capacitances of the retina, pigment epithelium (PE), and sclera. Axiosymmetric 2-D FEMs were created for monopolar stimulation electrodes using COMSOL. 250 μm diameter electrodes with 10 urn thick insulation were placed at three different locations near the retina: the inner limiting membrane (epiretinal), the subretinal space (PE/retina) (subretinal), and the choroid layer behind the PE/retina (supra-choroidal). A broad return electrode was located at the back of the eye (sclera). The relative dielectric constants of each eyewall layer with linearly varying resistivity for the retina layers were incorporated into the model. Biphasic 1 mA/cm~2 current pulses with pulse widths of either 0.5 ms (0.5 μC/cm~2), 1ms (1μC/cm~2), and 5 ms (5 μC/cm~2) were passed through the tip of the electrode for stimulation. We found that these waveforms, which match waveforms commonly used to activate the retina in retinal implants, show a transient-sustained electric field profile due to charging of the high capacitance and resistivity of the PE. The PE develops high electric fields in all three electrode models. Wider pulses induce greater electric fields in the PE than shorter pulses. This needs to be accounted for when determining safe levels of stimulation. Simulation models that assume constant resistivity (4k Ω-cm) for the retina calculate larger electric fields across the retina than Gaussian resistivity models (3k-7k Ω-cm). Electric field strength is known to be greatly enhanced at the electrode edges. We found that the electric fields at the electrode edge can cause significant damage to the retina even when the nominal current density is below the damage threshold.
机译:我们开发了由于双相刺激脉冲而在兔视网膜中产生的电场的有限化有限元模型(FEM)。该模型考虑了视网膜,色素上皮(PE)和巩膜的不同电阻率和电容。使用COMSOL为单极刺激电极创建了轴对称二维FEM。将直径为250μm且绝缘层厚度为10 um的电极放置在视网膜附近的三个不同位置:内部限制膜(视网膜上),视网膜下间隙(PE /视网膜)(视网膜下)和PE /视网膜后的脉络膜层(同上) -脉络膜)。宽阔的返回电极位于眼睛的后面(巩膜)。将具有线性变化的视网膜层电阻率的每个眼墙层的相对介电常数纳入模型。脉冲宽度为0.5 ms(0.5μC/ cm〜2),1ms(1μC/ cm〜2)和5 ms(5μC/ cm〜2)的双相1 mA / cm〜2电流脉冲电极的刺激。我们发现这些波形与通常用于激活视网膜植入物中的视网膜的波形相匹配,由于PE的高电容和电阻率的充电,它们显示出瞬态维持的电场分布。 PE在所有三个电极模型中都会产生高电场。与较短的脉冲相比,较宽的脉冲在PE中感应出更大的电场。在确定安全刺激水平时需要考虑这一点。假设视网膜的恒定电阻率(4kΩ-cm)的仿真模型比高斯电阻率模型(3k-7kΩ-cm)产生的整个视网膜电场更大。已知在电极边缘处电场强度会大大提高。我们发现,即使标称电流密度低于损伤阈值,电极边缘的电场也会对视网膜造成重大损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号