首页> 外文会议>Southern biomedical engineering conference >Quasi-static Analysis of Electric Field Distributions by Disc Electrodes in a Rabbit Eye Model
【24h】

Quasi-static Analysis of Electric Field Distributions by Disc Electrodes in a Rabbit Eye Model

机译:兔眼模型中盘电极的电场分布的准静态分析

获取原文

摘要

We developed a compartmentalized finite element model (FEM) of the electric fields generated in the rabbit retina due to a biphasic stimulus pulse. The model accounts for the different resistivities and capacitances of the retina, pigment epithelium (PE), and sclera. Axiosymmetric 2-D FEMs were created for monopolar stimulation electrodes using COMSOL. 250 μm diameter electrodes with 10 urn thick insulation were placed at three different locations near the retina: the inner limiting membrane (epiretinal), the subretinal space (PE/retina) (subretinal), and the choroid layer behind the PE/retina (supra-choroidal). A broad return electrode was located at the back of the eye (sclera). The relative dielectric constants of each eyewall layer with linearly varying resistivity for the retina layers were incorporated into the model. Biphasic 1 mA/cm~2 current pulses with pulse widths of either 0.5 ms (0.5 μC/cm~2), 1ms (1μC/cm~2), and 5 ms (5 μC/cm~2) were passed through the tip of the electrode for stimulation. We found that these waveforms, which match waveforms commonly used to activate the retina in retinal implants, show a transient-sustained electric field profile due to charging of the high capacitance and resistivity of the PE. The PE develops high electric fields in all three electrode models. Wider pulses induce greater electric fields in the PE than shorter pulses. This needs to be accounted for when determining safe levels of stimulation. Simulation models that assume constant resistivity (4k Ω-cm) for the retina calculate larger electric fields across the retina than Gaussian resistivity models (3k-7k Ω-cm). Electric field strength is known to be greatly enhanced at the electrode edges. We found that the electric fields at the electrode edge can cause significant damage to the retina even when the nominal current density is below the damage threshold.
机译:我们开发在兔视网膜产生的电场的区室的有限元模型(FEM)由于双相刺激脉冲。该模型考虑了视网膜,色素上皮细胞(PE),和巩膜的不同的电阻率和电容。 Axiosymmetric 2-d的FEM中使用COMSOL单极刺激电极产生。用10瓮厚绝缘250个微米直径的电极置于在视网膜附近三个不同位置:内界膜(视网膜),视网膜下腔(PE /视网膜)(视网膜下),并且后面的PE /视网膜(同上脉络膜层-choroidal)。一个广泛的返回电极被定位在眼睛(巩膜)的背面。线性调整电阻率视网膜层各自眼壁层的相对介电常数被合并到模型中。双相为1mA / cm〜2个的电流,要么0.5毫秒的脉冲宽度(0.5μC/厘米〜2),1毫秒(1μC/厘米〜2),以及5毫秒脉冲(5μC/厘米〜2)通过末端通过用于刺激的电极。我们发现,这些波形,该波形匹配通常用于激活在视网膜植入物在视网膜上,示出了瞬态持续电场分布由于PE的高电容和电阻率的充电。的PE开发在所有三个电极模型的高电场。较宽的脉冲诱导在PE比更短的脉冲更大的电场。这需要考虑确定刺激的安全水平时。仿真模型承担穿过视网膜比高斯电阻率模型(3K-7KΩ-cm)的视网膜计算较大的电场恒定电阻率(Ω4K-CM)。电场强度是已知的,在电极边缘大大提高。我们发现,在电极边缘的电场可能会导致视网膜损伤显著即使当额定电流密度低于损伤阈值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号