首页> 外文会议>25th International Semiconductor Laser Conference >What does it take to make the semiconductor laser a high coherence laser international semiconductor laser conference
【24h】

What does it take to make the semiconductor laser a high coherence laser international semiconductor laser conference

机译:如何使半导体激光器成为高相干激光器国际半导体激光器大会

获取原文
获取原文并翻译 | 示例

摘要

The Semiconductor laser (SCL) is, arguably, the most important player in the optoelectronic field. It is hard to imagine a modern communications measurement, or a sensing system without it. It owes this distinction principally to its monolithic semiconductor character, which is responsible for a long list of crucial attributes. These include small size, efficiency, natural compatibility with electronic driving circuitry, speed, structural and chemical control of key features. Another feature of the SCL, which is mentioned less often is its intellectual elegance. Its theoretical underpinnings, design and fabrication require an intricate interweaving of solid state physics, quantum field theory, semiconductor device theory, material science, and laser theory. The chemical and fabrication control enables us to vary the active medium from that of a bulk semiconductor to that of atom-like quantum dots. The incorporation of spatial modulation, of the structure, modulated gratings, photonic crystals, for example, enables a spatial control that would be analogous, to the ability to design crystals with varying size of atoms and of periodicities. The noise, and the resulting degraded coherence, of the semiconductor laser is an example of the Dissipation-Fluctuation theorem. Which links losses with noise. This is manifested in the SCL by following chain of causally related events: high optical losses (dissipation) → large compensatory gain provided by the inverted population of electrons and holes → high rate of spontaneous recombination emission into the laser mode → low coherence. This chain can, however, be snapped by taking advantage of the new flexibility afforded us by the Si photonic platform. This is achieved by redesigning the laser mode so that the overwhelming majority (~ 99%) of optical energy is moved away from the lossy III-V material into the, essentially lossless, Si. The residual, about 1% in our case, of the optical energy remaining in the III-V is just sufficient to provide the now reduced, threshold gain. Applying these ideas results in new lasers in which the fundamental quantum noise is some three orders of magnitude below that of high-performance commercial Distributed Feedback SCLS. Some thoughts of future directions for improved coherence in SCLs will conclude the talk.
机译:可以说,半导体激光器(SCL)是光电领域最重要的参与者。很难想像现代的通信测量或没有它的传感系统。这主要归功于其整体半导体特性,这是一长串重要属性的原因。其中包括体积小,效率高,与电子驱动电路的自然兼容性,速度,关键特征的结构和化学控制。 SCL的另一个功能(在学术界很少见)是其优雅的外观。它的理论基础,设计和制造需要固态物理学,量子场论,半导体器件理论,材料科学和激光理论的复杂交织。化学和制造控制使我们能够将活性介质从块状半导体的活性介质改变为原子状量子点的活性介质。例如,结构的空间调制,调制光栅,光子晶体的结合使得能够进行空间控制,这类似于设计具有变化的原子大小和周期性的晶体的能力。半导体激光器的噪声以及由此导致的相干性降低是耗散定理的一个例子。将损失与噪声联系起来。这在SCL中表现为以下一系列因果相关的事件:高的光损耗(耗散)→电子和空穴的反向填充提供了大的补偿增益→高的自发复合发射率进入激光模式→低相干性。但是,可以利用Si光子平台为我们提供的新灵活性来锁定该链。这可以通过重新设计激光模式来实现,以使绝大多数(〜99%)的光能从有损的III-V材料转移到基本上无损的Si中。 III-V中剩余的光能的剩余量(在我们的情况下约为1%)足以提供现在减小的阈值增益。将这些想法应用到新的激光器中,其基本量子噪声比高性能商用分布式反馈SCLS的噪声低大约三个数量级。讨论将为提高SCL的一致性提供未来方向的一些想法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号