首页> 外文会议>25th Annual BACUS Symposium on Photomask Technology pt.2 >Area Measurements for Simulation-Based Dispositioning of Masks
【24h】

Area Measurements for Simulation-Based Dispositioning of Masks

机译:基于模拟的掩膜版的面积测量

获取原文
获取原文并翻译 | 示例

摘要

The dispositioning of mask defects must also heed the increasing gap between the lithography wavelength and wafer-feature widths. For the larger technology nodes, where printed-wafer shapes are similar to those on the mask, mask-level analysis is sufficient. However, for smaller nodes, wafer-level scoring is useful since every defect does not significantly impact the wafer. Wafer-level analysis often relies on measurements of critical dimension (CD). However, as reticle enhancement technology proliferates, there are increasingly more curved edges where CD cannot be used. For example, false alarms can result from measuring CD near line ends because slight variations in measurement position may produce large CD changes. More importantly, a killer defect may be missed if cutlines are forbidden near line ends because the CD measurements are too far from the defect. Wherever CD measurements are not advisable, we advocate the use of Area scoring by computing the difference in printed feature area. We are not abandoning CD scoring but rather combining it with Area scoring, and using the more pessimistic score. For Area scoring, we use (Defect area - Reference area)/(Reference area). In general, the reference area is difficult to define since many shapes are not easily parsed into primitive shapes. Therefore, we use a square of side equal to the target CD. This square defines the window for a sliding-window average of the area difference. The maximum average value is then chosen from the entire image. Unlike Edge Placement Error, Area is sensitive to long, thin difference regions. Unlike Flux or Maximum Intensity Difference, Area is threshold-aware; it measures what prints and shows process-window variation.
机译:掩膜缺陷的布置还必须注意光刻波长和晶圆特征宽度之间不断增加的间隙。对于较大的技术节点,其中印刷晶圆的形状与掩模上的形状相似,掩模级分析就足够了。但是,对于较小的节点,晶圆级计分是有用的,因为每个缺陷都不会显着影响晶圆。晶圆级分析通常依赖于关键尺寸(CD)的测量。但是,随着标线增强技术的普及,越来越多的弯曲边缘无法使用CD。例如,由于测量位置附近的CD变化,可能会导致误报,因为测量位置的微小变化可能会导致CD变化较大。更重要的是,如果裁切线在生产线末端附近被禁止,可能会导致致命缺陷,因为CD测量距离缺陷太远了。在不建议使用CD测量的地方,我们主张通过计算打印特征区域的差异来使用区域评分。我们不是放弃CD评分,而是将其与区域评分相结合,并使用更为悲观的评分。对于区域评分,我们使用(缺陷区域-参考区域)/(参考区域)。通常,参考区域很难定义,因为许多形状不容易解析为原始形状。因此,我们使用等于目标CD的边的平方。该正方形定义了面积差异的滑动窗口平均值的窗口。然后从整个图像中选择最大平均值。与边缘放置错误不同,区域对长而细的差异区域敏感。与磁通量或最大强度差不同,面积可感知阈值。它测量打印的内容并显示过程窗口的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号