首页> 外文会议>2017 IEEE 24th International Conference on High Performance Computing >Building Halo Merger Trees from the Q Continuum Simulation
【24h】

Building Halo Merger Trees from the Q Continuum Simulation

机译:从Q连续体模拟构建Halo合并树

获取原文
获取原文并翻译 | 示例

摘要

Cosmological N-body simulations rank among the most computationally intensive efforts today. A key challenge is the analysis of structure, substructure, and the merger history for many billions of compact particle clusters, called halos. Effectively representing the merging history of halos is essential for many galaxy formation models used to generate synthetic sky catalogs, an important application of modern cosmological simulations. Generating realistic mock catalogs requires computing the halo formation history from simulations with large volumes and billions of halos over many time steps, taking hundreds of terabytes of analysis data. We present fast parallel algorithms for producing halo merger trees and tracking halo substructure from a single-level, density-based clustering algorithm. Merger trees are created from analyzing the halo-particle membership function in adjacent snapshots, and substructure is identified by tracking the "cores" of merging halos - sets of particles near the halo center. Core tracking is performed after creating merger trees and uses the relationships found during tree construction to associate substructures with hosts. The algorithms are implemented with MPI and evaluated on a Cray XK7 supercomputer using up to 16,384 processes on data from HACC, a modern cosmological simulation framework. We present results for creating merger trees from 101 analysis snapshots taken from the Q Continuum, a large volume, high mass resolution, cosmological simulation evolving half a trillion particles.
机译:宇宙N体模拟是当今计算强度最高的工作之一。关键的挑战是分析数十亿个称为晕圈的紧凑粒子簇的结构,子结构和合并历史。有效地表示光晕的合并历史对于许多用于生成合成天空目录的星系形成模型至关重要,这是现代宇宙论模拟的重要应用。生成现实的模拟目录需要从大量时间和数十亿光晕的仿真中计算光晕形成历史,并需要数百TB的分析数据。我们提出了一种快速的并行算法,用于从单个级别的基于密度的聚类算法中生成光晕合并树并跟踪光晕子结构。通过分析相邻快照中的光晕粒子隶属函数来创建合并树,并通过跟踪合并光晕的“核心”(靠近光晕中心的粒子集)来识别子结构。核心跟踪是在创建合并树之后执行的,并使用在树构建过程中发现的关系将子结构与主机相关联。该算法使用MPI实施,并在Cray XK7超级计算机上进行了评估,对来自现代宇宙学模拟框架HACC的数据进行了多达16,384个处理。我们提供了从Q连续体中获得的101个分析快照中创建合并树的结果,这是一个大体积,高质量分辨率,演化了五万亿个粒子的宇宙学模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号