...
首页> 外文期刊>Astronomy and astrophysics >Building merger trees from cosmological N-body simulations - Towards improving galaxy formation models using subhaloes
【24h】

Building merger trees from cosmological N-body simulations - Towards improving galaxy formation models using subhaloes

机译:从宇宙学N体模拟中构建合并树-试图使用亚晕来改善星系形成模型

获取原文
           

摘要

Context. In the past decade or so, using numerical N-bodysimulations to describe the gravitational clustering of dark matter(DM) in an expanding universe has become the tool of choice fortackling the issue of hierarchical galaxy formation. As mass resolutionincreases with the power of supercomputers, one is able to grasp finerand finer details of this process, resolving more and more of the innerstructure of collapsed objects. This begs one to revisit time and againthe post-processing tools with which one transforms particles into``invisible'' dark matter haloes and from thereon into luminousgalaxies. Aims. Although a fair amount of work has beendevoted to growing Monte-Carlo merger trees that resemble those builtfrom an N-body simulation, comparatively littleeffort has been invested in quantifying the caveats one necessarilyencounters when one extracts trees directly from such a simulation. Tosomewhat revert the tide, this paper seeks to provide its reader with acomprehensive study of the problems one faces when following thisroute. Methods. The first step in building merger historiesof dark matter haloes and their subhaloes is to identify thesestructures in each of the time outputs (snapshots) produced by thesimulation. Even though we discuss a particular implementation of suchan algorithm (called AdaptaHOP) in this paper, we believe that ourresults do not depend on the exact details of the implementation butinstead extend to most if not all (sub)structure finders. To illustratethis point in the appendix we compare AdaptaHOP's results to thestandard friend-of-friend (FOF) algorithm, widely utilised in theastrophysical community. We then highlight different ways of buildingmerger histories from AdaptaHOP haloes and subhaloes, contrasting theirvarious advantages and drawbacks. Results. We find that the best approach to (sub)halomerging histories is through an analysis that goes back and forthbetween identification and tree building rather than one that conductsa straightforward sequential treatment of these two steps. This isrooted in the complexity of the merging trees that have to depict aninherently dynamical process from the partial temporal informationcontained in the collection of instantaneous snapshots available fromthe N-body simulation. However, we also propose asimpler sequential ``Most massive Substructure Method'' (MSM) whosetrees approximate those obtained via the more complicated nonsequential method. Key words: methods: numerical - methods: N-bodysimulations - cosmology: large-scale structure of Universe
机译:上下文。在过去的十年左右的时间里,使用数值N体模拟来描述不断扩展的宇宙中暗物质(DM)的引力聚类已成为解决分层星系形成问题的首选工具。随着大规模分辨率随着超级计算机功能的增强而增加,人们能够掌握这一过程的精细细节,从而解决越来越多的坍塌物体的内部结构。这就要求人们一次又一次地访问后处理工具,利用该工具可以将粒子转换为``不可见的''暗物质光环,并从其上转换为发光星系。目的尽管已经进行了大量工作来生长类似于由N体模拟构建的蒙特卡洛合并树,但是当人们直接从这种模拟中提取树时,已经投入了相当少的精力来量化一个必然遇到的警告。为了某种程度地逆转潮流,本文旨在为读者提供一个全面的研究,以了解遵循此路线时人们所面临的问题。方法。建立暗物质光环及其亚光晕合并历史的第一步是在模拟产生的每个时间输出(快照)中识别这些结构。即使我们在本文中讨论了这种算法的特定实现(称为AdaptaHOP),我们仍然相信结果并不取决于实现的确切细节,而是扩展到了大多数(如果不是全部)结构发现者。为了说明附录中的这一点,我们将AdaptaHOP的结果与天体物理学界广泛使用的标准“朋友之友”(FOF)算法进行了比较。然后,我们重点介绍了从AdaptaHOP光环和亚光环构建合并历史的不同方法,并比较了它们的各种优缺点。结果。我们发现,(次)卤化历史的最佳方法是通过在标识和树构建之间来回分析,而不是对这两个步骤进行直接的顺序处理。这归因于合并树的复杂性,合并树必须从N体仿真可用的瞬时快照集合中包含的部分时间信息来描述固有的动态过程。但是,我们还提出了一种更简单的顺序``最大规模子结构方法''(MSM),其树近似于通过更复杂的非顺序方法获得的树。关键词:方法:数值-方法:N体模拟-宇宙学:宇宙的大规模结构

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号