首页> 外文会议>2017 4th International Conference on Industrial Engineering and Applications >Multi-scale modelling for cellulosic biomass mixture during enzymatic hydrolysis
【24h】

Multi-scale modelling for cellulosic biomass mixture during enzymatic hydrolysis

机译:酶解过程中纤维素生物质混合物的多尺度建模

获取原文
获取原文并翻译 | 示例

摘要

Renewable energy or biofuel from lignocellulosic biomass is an alternative way to replace the depleting fossil fuels. The production cost can be reduced by increasing the concentration of biomass particles. However, lignocellulosic biomass is a suspension of natural fibres, and processing at high solid concentration is a challenging task. Thus, understanding the factors that affect the rheology of biomass suspension is crucial in order to maximize the production at a minimum cost. Our aim was to develop a multiscale modelling for enzymatic hydrolysis of cellulose by combining three scales: the macroscopic flow field, the mesoscopic particle orientation, and the microscopic reactive kinetics. The governing equations for the flow field, particle stress, kinetic equations, and particle orientation were coupled and were simultaneously solved using a finite element method based software, COMSOL. Essentially, clear connections were made between microscopic, mesoscopic, and macroscopic properties of biomass slurries undergoing enzymatic hydrolysis. One of the main results was the apparent viscosity and the yield stress increased with the increase in solid concentration. The results from the simulation model agreed qualitatively with the experimental findings. This approach has enables us to obtain better predictive capabilities, hence increasing our understanding on the behaviour of biomass suspension.
机译:来自木质纤维素生物质的可再生能源或生物燃料是替代消耗化石燃料的替代方法。通过增加生物质颗粒的浓度可以降低生产成本。但是,木质纤维素生物质是天然纤维的悬浮液,在高固体浓度下加工是一项艰巨的任务。因此,为了以最小的成本最大化产量,了解影响生物质悬浮液流变性的因素至关重要。我们的目标是通过组合三个尺度:宏观流场,介观颗粒取向和微观反应动力学,开发纤维素酶水解的多尺度模型。耦合了流场,颗粒应力,动力学方程和颗粒取向的控制方程,并使用基于有限元方法的COMSOL软件同时求解。本质上,进行酶水解的生物质浆料的微观,介观和宏观特性之间建立了明确的联系。主要结果之一是表观粘度和屈服应力随固体浓度的增加而增加。仿真模型的结果在质量上与实验结果一致。这种方法使我们能够获得更好的预测能力,从而增加了我们对生物质悬浮液行为的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号