首页> 外文会议>2015 IEEE Magnetics Conference >Time resolved magnetic imaging at 10Ghz and beyond
【24h】

Time resolved magnetic imaging at 10Ghz and beyond

机译:在10Ghz及以上的时间分辨磁成像

获取原文

摘要

Summary form only given. Understanding magnetic properties at ultrafast timescales is crucial for the development of new generations of magnetic devices. Such devices will employ the spin torque or spin Hall effect, whose manifestation at the nanoscale is not yet sufficiently understood, which is why studies addressing these effects are of great fundamental significance as well. The samples of interest are often thin film magnetic multilayers with thicknesses in the range of a atomic layers. This fact alone presents a sensitivity challenge in STXM microscopy, which is more suited toward studying thicker samples. In addition the relevant time scale is of the order of 10 ps, which is well below the typical x-ray pulse length of 50-100 ps. Altogether this means that pushing the time resolution of a synchrotron x-ray microscopy experiment is synonymous with improving the signal to noise ratio on the detector and providing stable, low jitter excitation to not further dilute the already small magnetic signals. To achieve the required stability and sensitivity the SSRL STXM is equipped with a single photon counting electronics that effectively allows us to use a double lock-in detection at 476MHz (the x-ray pulse frequency) and 1.28MHz (the synchrotron revelation frequency). The pulsed or continuous sample excitation source is synchronized with the synchrotron source with a few picosecond drift over 24 hours (see figure). This setup currently allows us to achieve a signal to noise ratio of better than 10000, enabling us to detect miniscule variations of the x-ray absorption cross section. In this talk I will describe the time resolved STXM setup developed at SSRL and present firsts results that have been obtained using the instrument in collaboration with an outstanding group of external users. The instrument operates in ultra high vacuum (~10-8torr) and allows us to apply electrical pulses to our samples that can be placed in out of plane magnetic fields up to 0.8 Tesla - r in plane magnetic fields up to 0.3 Tesla. We have used the instrument to successfully image spin waves excited in spin-torque and spin Hall oscillators with nano contacts of the size of ~100nm. We also succeeded in imaging different excitation modes of magnetic samples in ferromagnetic resonance at 9.6GHz excitation frequency, where the opening angle of the precession cone is of the order of 10mrad. The facility that is dedicated to ultrafast studies of materials under electric and magnetic fields is open to general users who are interested in this field.
机译:仅提供摘要表格。在超快的时间尺度上了解磁性能对于开发新一代磁设备至关重要。这样的装置将利用自旋扭矩或自旋霍尔效应,其在纳米尺度上的表现还没有被充分理解,这就是为什么针对这些效应的研究也具有重要的基础意义的原因。感兴趣的样品通常是厚度在原子层范围内的薄膜磁性多层。仅这个事实就在STXM显微镜中提出了灵敏度挑战,这更适合研究较厚的样品。此外,相关的时间标度约为10 ps,远低于典型的X射线脉冲长度50-100 ps。总而言之,这意味着提高同步加速器X射线显微镜实验的时间分辨率与提高检测器上的信噪比并提供稳定,低抖动的激励从而不再稀释已经很小的磁信号是同义词。为了达到所需的稳定性和灵敏度,SSRL STXM配备了一个光子计数电子器件,有效地使我们能够在476MHz(X射线脉冲频率)和1.28MHz(同步加速器显示频率)上使用双重锁定检测。脉冲或连续样品激发源与同步加速器源同步,在24小时内有几皮秒的漂移(见图)。目前,这种设置使我们能够获得优于10000的信噪比,从而使我们能够检测到X射线吸收横截面的微小变化。在本次演讲中,我将描述由SSRL开发的时间分辨STXM设置,并介绍与杰出的外部用户合作使用该仪器获得的首批结果。该仪器在超高真空(〜10-8torr)中运行,使我们可以向样品施加电脉冲,这些样品可以放置在高达0.8 Tesla的平面外磁场中–在高达0.3 Tesla的平面磁场中。我们已经使用该仪器成功成像了在自旋扭矩和自旋霍尔振荡器中激发的自旋波,其中纳米触点的尺寸约为100nm。我们还成功地以9.6GHz激发频率在铁磁共振中对磁性样品的不同激发模式进行了成像,其中进动锥的张角约为10mrad。该设备专门用于对电场和磁场下的材料进行超快研究,向对此领域感兴趣的普通用户开放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号