首页> 外文会议>2014 Design, Automation amp; Test in Europe Conference and Exhibition >Efficient performance estimation with very small sample size via physical subspace projection and maximum a posteriori estimation
【24h】

Efficient performance estimation with very small sample size via physical subspace projection and maximum a posteriori estimation

机译:通过物理子空间投影以很小的样本量进行有效的性能估计,并最大程度地进行后验估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel integrated circuits performance estimation algorithm through a physical subspace projection and maximum-a-posteriori (MAP) estimation. Our goal is to estimate the distribution of a target circuit performance with very small measurement sample size from on-chip monitor circuits. The key idea in this work is to exploit the fact that simulation and measurement data are physically correlated under different circuit configurations and topologies. First, different groups of measurements are projected to a subspace spanned by a set of physical variables. The projection is achieved by performing a sensitivity analysis of measurement parameters with respect to the subspace variables using a virtual source MOSFET compact model. Then a Bayesian treatment is developed by introducing prior distributions over these subspace variables. Maximum a posteriori estimation is then applied using the prior, and an expectation-maximization (EM) algorithm is used to estimate the circuit performance. The proposed method is validated by postsilicon measurement for a commercial 28-nm process. An average error reduction of 2x is achieved which can be translated to 32x reduction on data size needed for samples on the same die. A 150x and 70x sample size reduction on training dies is also achieved compared to traditional least-square fitting method and least-angle regression method, respectively, without reducing accuracy.
机译:在本文中,我们通过物理子空间投影和最大后验(MAP)估计提出了一种新颖的集成电路性能估计算法。我们的目标是通过片上监控电路以很小的测量样本量来估算目标电路性能的分布。这项工作的关键思想是利用以下事实:仿真和测量数据在不同的电路配置和拓扑下是物理相关的。首先,将不同的测量组投影到由一组物理变量覆盖的子空间。通过使用虚拟源MOSFET紧凑模型对子空间变量执行测量参数的敏感性分析来实现投影。然后通过引入这些子空间变量的先验分布来发展贝叶斯处理。然后使用先验值应用最大后验估计,并且使用期望最大化(EM)算法来估计电路性能。所提出的方法已通过用于商用28纳米工艺的硅后测量验证。平均误差降低了2倍,这可以转化为同一芯片上样品所需的数据大小减少32倍。与传统的最小二乘拟合方法和最小角度回归方法相比,在训练模具上的样本大小分别减少了150倍和70倍,而没有降低准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号